Search results
Results from the WOW.Com Content Network
An unusual addition to the R-25 was an emergency mode thrust boost which increased the compressor speed to 106% and also increased the afterburner fuel flow with the addition of a second afterburner fuel pump. Thrust was increased to 96.5 kilonewtons (21,700 lb f) below an altitude of 2,000 metres (6,600 ft). The time limit for its use was 1 ...
Burning all the oxygen delivered by the compressor stages would create temperatures (3,700 °F (2,040 °C)) high enough to significantly weaken the internal structure of the engine, but by mixing the combustion products with unburned air from the compressor at (600 °F (316 °C)) a substantial amount of oxygen (fuel/air ratio 0.014 compared to ...
The B-1's four F101 engines helped the aircraft win 61 world records for speed, time-to-climb, payload and range. The GE F110 turbofan fighter jet engine is a derivative of the F101, designed using data from the F101-powered variant of the F-16 Fighting Falcon tested in the early 1980s.
To keep the F414 in the same envelope, or space occupied in the airframe, as the F404, the afterburner section was shortened by 4 in (10 cm) and the combustor shortened by 1 in (2.5 cm). Also changed from the F404 is the construction of the first three stages of the high-pressure compressor which are blisks rather than separate discs and ...
The Pratt & Whitney F135 is an afterburning turbofan developed for the Lockheed Martin F-35 Lightning II, a single-engine strike fighter.It has two variants; a Conventional Take-Off and Landing variant used in the F-35A and F-35C, and a two-cycle Short Take-Off Vertical Landing variant used in the F-35B that includes a forward lift fan. [1]
It was later adapted with an afterburner for supersonic designs, and in this form it was the world's first production afterburning turbofan, going on to power the F-111 and the F-14A Tomcat, as well as being used in early versions of the A-7 Corsair II without an afterburner. First flight of the TF30 was in 1964 and production continued until 1986.
There were many detail improvements as well, including the replacement of the original compressor rotor with a new one made of magnesium alloy. The first Atar 08 B-3 produced 42,000 N (9,400 lb f) and had a slightly improved overall pressure ratio of 5.5:1. A new and much improved afterburner was designed for the engine, resulting in the Atar 09.
The MiG-21bis received the upgraded Tumansky R-25 engine, which retained the standard 9,400 / 14,600 lbf (42 / 65 kN) normal and afterburner power settings of earlier R-13 powerplants, but with emergency thrust boost from an overspeed to 106% and increased afterburner fuel from a second afterburner fuel pump. [7]