Ads
related to: inverse power method solved examples with solutions worksheet- Grades 3-5 Math lessons
Get instant access to hours of fun
standards-based 3-5 videos & more.
- K-8 Math Videos & Lessons
Used in 20,000 Schools
Loved by Students & Teachers
- Grades 6-8 Math Lessons
Get instant access to hours of fun
standards-based 6-8 videos & more.
- Teachers Try it Free
Get 30 days access for free.
No credit card or commitment needed
- Grades 3-5 Math lessons
Search results
Results from the WOW.Com Content Network
In numerical analysis, inverse iteration (also known as the inverse power method) is an iterative eigenvalue algorithm. It allows one to find an approximate eigenvector when an approximation to a corresponding eigenvalue is already known. The method is conceptually similar to the power method. It appears to have originally been developed to ...
Faà di Bruno's formula gives coefficients of the composition of two formal power series in terms of the coefficients of those two series. Equivalently, it is a formula for the nth derivative of a composite function. Lagrange reversion theorem for another theorem sometimes called the inversion theorem; Formal power series#The Lagrange inversion ...
Rayleigh quotient iteration is an eigenvalue algorithm which extends the idea of the inverse iteration by using the Rayleigh quotient to obtain increasingly accurate eigenvalue estimates. Rayleigh quotient iteration is an iterative method , that is, it delivers a sequence of approximate solutions that converges to a true solution in the limit.
In mathematics, power iteration (also known as the power method) is an eigenvalue algorithm: given a diagonalizable matrix, the algorithm will produce a number , which is the greatest (in absolute value) eigenvalue of , and a nonzero vector , which is a corresponding eigenvector of , that is, =.
The Lanczos algorithm is most often brought up in the context of finding the eigenvalues and eigenvectors of a matrix, but whereas an ordinary diagonalization of a matrix would make eigenvectors and eigenvalues apparent from inspection, the same is not true for the tridiagonalization performed by the Lanczos algorithm; nontrivial additional steps are needed to compute even a single eigenvalue ...
To this matrix the inverse power iteration is applied in the three variants of no shift, constant shift and generalized Rayleigh shift in the three stages of the algorithm. It is more efficient to perform the linear algebra operations in polynomial arithmetic and not by matrix operations, however, the properties of the inverse power iteration ...
In power iteration, for example, the eigenvector is actually computed before the eigenvalue (which is typically computed by the Rayleigh quotient of the eigenvector). [11] In the QR algorithm for a Hermitian matrix (or any normal matrix), the orthonormal eigenvectors are obtained as a product of the Q matrices from the steps in the algorithm ...
This can be done by preconditioning: A matrix P such that P ≈ A −1 is constructed, and then the equation PAx = Pb is solved for x. Using the exact inverse of A would be nice but finding the inverse of a matrix is something we want to avoid because of the computational expense.
Ads
related to: inverse power method solved examples with solutions worksheet