enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    Let A be a square n × n matrix with n linearly independent eigenvectors q i (where i = 1, ..., n).Then A can be factored as = where Q is the square n × n matrix whose i th column is the eigenvector q i of A, and Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues, Λ ii = λ i.

  3. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    The set of all eigenvectors of T corresponding to the same eigenvalue, together with the zero vector, is called an eigenspace, or the characteristic space of T associated with that eigenvalue. [ 9 ] If a set of eigenvectors of T forms a basis of the domain of T , then this basis is called an eigenbasis .

  4. Characteristic polynomial - Wikipedia

    en.wikipedia.org/wiki/Characteristic_polynomial

    In linear algebra, eigenvalues and eigenvectors play a fundamental role, since, given a linear transformation, an eigenvector is a vector whose direction is not changed by the transformation, and the corresponding eigenvalue is the measure of the resulting change of magnitude of the vector.

  5. Eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_algorithm

    Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...

  6. Spectral graph theory - Wikipedia

    en.wikipedia.org/wiki/Spectral_graph_theory

    In mathematics, spectral graph theory is the study of the properties of a graph in relationship to the characteristic polynomial, eigenvalues, and eigenvectors of matrices associated with the graph, such as its adjacency matrix or Laplacian matrix.

  7. Riesz projector - Wikipedia

    en.wikipedia.org/wiki/Riesz_projector

    In mathematics, or more specifically in spectral theory, the Riesz projector is the projector onto the eigenspace corresponding to a particular eigenvalue of an operator (or, more generally, a projector onto an invariant subspace corresponding to an isolated part of the spectrum).

  8. Spectral theorem - Wikipedia

    en.wikipedia.org/wiki/Spectral_theorem

    This condition implies that all eigenvalues of a Hermitian map are real: To see this, it is enough to apply it to the case when x = y is an eigenvector. (Recall that an eigenvector of a linear map A is a non-zero vector v such that A v = λv for some scalar λ. The value λ is the corresponding eigenvalue.

  9. Jordan normal form - Wikipedia

    en.wikipedia.org/wiki/Jordan_normal_form

    This shows that the eigenvalues are 1, 2, 4 and 4, according to algebraic multiplicity. The eigenspace corresponding to the eigenvalue 1 can be found by solving the equation Av = λv. It is spanned by the column vector v = (−1, 1, 0, 0) T. Similarly, the eigenspace corresponding to the eigenvalue 2 is spanned by w = (1, −1, 0, 1) T.