Search results
Results from the WOW.Com Content Network
2 Example. 3 Proofs. Toggle Proofs subsection. 3.1 ... Wilson's theorem states that a natural number n > 1 is a prime number if and only if the product of all the ...
Clement's congruence-based theorem characterizes the twin primes pairs of the form (, +) through the following conditions: [()! +] ((+)), +P. A. Clement's original 1949 paper [2] provides a proof of this interesting elementary number theoretic criteria for twin primality based on Wilson's theorem.
Because the set of primes is a computably enumerable set, by Matiyasevich's theorem, it can be obtained from a system of Diophantine equations. Jones et al. (1976) found an explicit set of 14 Diophantine equations in 26 variables, such that a given number k + 2 is prime if and only if that system has a solution in nonnegative integers: [7]
Linear congruence theorem; Method of successive substitution; Chinese remainder theorem; Fermat's little theorem. Proofs of Fermat's little theorem; Fermat quotient; Euler's totient function. Noncototient; Nontotient; Euler's theorem; Wilson's theorem; Primitive root modulo n. Multiplicative order; Discrete logarithm; Quadratic residue. Euler's ...
In number theory, a Wilson prime is a prime number such that divides ()! +, where "!" denotes the factorial function; compare this with Wilson's theorem, which states that every prime divides ()! +. Both are named for 18th-century English mathematician John Wilson ; in 1770, Edward Waring credited the theorem to Wilson, [ 1 ] although it had ...
A simple but very inefficient primality test uses Wilson's theorem, which states that is prime if and only if: ( p − 1 ) ! ≡ − 1 ( mod p ) {\displaystyle (p-1)!\equiv -1{\pmod {p}}} Although this method requires about p {\displaystyle p} modular multiplications, rendering it impractical, theorems about primes and modular residues form the ...
For premium support please call: 800-290-4726 more ways to reach us
Noether's theorem (Lie groups, calculus of variations, differential invariants, physics) Noether's second theorem (calculus of variations, physics) Noether's theorem on rationality for surfaces (algebraic surfaces) Non-squeezing theorem (symplectic geometry) Norton's theorem (electrical networks) Novikov's compact leaf theorem