Search results
Results from the WOW.Com Content Network
Asparagine (symbol Asn or N [2]) is an α-amino acid that is used in the biosynthesis of proteins.It contains an α-amino group (which is in the protonated −NH + 3 form under biological conditions), an α-carboxylic acid group (which is in the deprotonated −COO − form under biological conditions), and a side chain carboxamide, classifying it as a polar (at physiological pH), aliphatic ...
Carbons grey, oxygens red and nitrogens blue. The main chain - main chain hydrogen bond is in red and the side chain - main chain hydrogen bond (which also forms an Asx turn) is dotted grey. When one of the hydrogen bonds is between the main chain oxygen of residue i and the side chain NH of residue i+3 the motif incorporates a beta turn.
The different types of lipid-linked oligosaccharide (LLO) precursor produced in different organisms.. N-linked glycosylation is the attachment of an oligosaccharide, a carbohydrate consisting of several sugar molecules, sometimes also referred to as glycan, to a nitrogen atom (the amide nitrogen of an asparagine (Asn) residue of a protein), in a process called N-glycosylation, studied in ...
It consists of three amino acid residues (labeled i, i+1 and i+2) in which residue i is an aspartate (Asp) or asparagine (Asn) that forms a hydrogen bond from its sidechain CO group to the mainchain NH group of residue i+2. About 14% of Asx residues present in proteins belong to Asx turns.
In this modification, an asparagine or aspartate side chain attacks the following peptide bond, forming a symmetrical succinimide intermediate. Hydrolysis of the intermediate produces either aspartate or the β-amino acid, iso(Asp). For asparagine, either product results in the loss of the amide group, hence "deamidation". hydroxylation
Deamidation is a chemical reaction in which an amide functional group in the side chain of the amino acids asparagine or glutamine is removed or converted to another functional group. Typically, asparagine is converted to aspartic acid or isoaspartic acid. Glutamine is converted to glutamic acid or pyroglutamic acid (5-oxoproline).
Escherichia coli derived asparagine synthetase is a dimeric protein with each subunit folding into two distinct domains. [4] The N-terminal region consists of two layers of six-stranded antiparallel β-sheets between which is the active site responsible for the hydrolysis of glutamine. [4]
N-linked glycans attached to a nitrogen of asparagine or arginine side-chains. N-linked glycosylation requires participation of a special lipid called dolichol phosphate. O-linked glycans attached to the hydroxyl oxygen of serine, threonine, tyrosine, hydroxylysine, or hydroxyproline side-chains, or to oxygens on lipids such as ceramide.