Search results
Results from the WOW.Com Content Network
In analytic geometry, the intersection of a line and a plane in three-dimensional space can be the empty set, a point, or a line. It is the entire line if that line is embedded in the plane, and is the empty set if the line is parallel to the plane but outside it. Otherwise, the line cuts through the plane at a single point.
In mathematics, a plane is a two-dimensional space or flat surface that extends indefinitely. A plane is the two-dimensional analogue of a point (zero dimensions), a line (one dimension) and three-dimensional space. When working exclusively in two-dimensional Euclidean space, the definite article is used, so the Euclidean plane refers to the ...
A linear equation in line coordinates has the form al + bm + c = 0, where a, b and c are constants. Suppose (l, m) is a line that satisfies this equation.If c is not 0 then lx + my + 1 = 0, where x = a/c and y = b/c, so every line satisfying the original equation passes through the point (x, y).
The three possible plane-line relationships in three dimensions. (Shown in each case is only a portion of the plane, which extends infinitely far.) In analytic geometry, the intersection of a line and a plane in three-dimensional space can be the empty set, a point, or a line. It is the entire line if that line is embedded in the plane, and is ...
Line m is in the same plane as line l but does not intersect l (recall that lines extend to infinity in either direction). When lines m and l are both intersected by a third straight line (a transversal) in the same plane, the corresponding angles of intersection with the transversal are congruent.
Alternatively, a line can be described as the intersection of two planes. Let L be a line contained in distinct planes a and b with homogeneous coefficients (a 0 : a 1 : a 2 : a 3) and (b 0 : b 1 : b 2 : b 3), respectively. (The first plane equation is =, for example.)
The equation = is an equation of a line in the projective plane (see definition of a line in the projective plane), and is called the line at infinity. The equivalence classes, , are the lines through the origin with the origin removed. The origin does not really play an essential part in the previous discussion so it can be added back in ...
In mathematics and physics, vector notation is a commonly used notation for representing vectors, [1] [2] ... The terms line-segment, plane-segment, plane magnitude ...