enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Pasch's axiom - Wikipedia

    en.wikipedia.org/wiki/Pasch's_axiom

    Pasch's axiom — Let A, B, C be three points that do not lie on a line and let a be a line in the plane ABC which does not meet any of the points A, B, C.If the line a passes through a point of the segment AB, it also passes through a point of the segment AC, or through a point of segment BC.

  3. Concurrent lines - Wikipedia

    en.wikipedia.org/wiki/Concurrent_lines

    Lines A, B and C are concurrent in Y. In geometry, lines in a plane or higher-dimensional space are concurrent if they intersect at a single point.. The set of all lines through a point is called a pencil, and their common intersection is called the vertex of the pencil.

  4. Line segment - Wikipedia

    en.wikipedia.org/wiki/Line_segment

    A closed line segment includes both endpoints, while an open line segment excludes both endpoints; a half-open line segment includes exactly one of the endpoints. In geometry , a line segment is often denoted using an overline ( vinculum ) above the symbols for the two endpoints, such as in AB .

  5. Affine geometry - Wikipedia

    en.wikipedia.org/wiki/Affine_geometry

    An axiomatic treatment of plane affine geometry can be built from the axioms of ordered geometry by the addition of two additional axioms: [12] (Affine axiom of parallelism) Given a point A and a line r not through A, there is at most one line through A which does not meet r.

  6. Hilbert's axioms - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_axioms

    For every three points A, B, C which do not lie in the same line, there exists no more than one plane that contains them all. If two points A, B of a line a lie in a plane α, then every point of a lies in α. In this case we say: "The line a lies in the plane α", etc. If two planes α, β have a point A in common, then they have at least a ...

  7. Line (geometry) - Wikipedia

    en.wikipedia.org/wiki/Line_(geometry)

    A ray with a terminus at A, with two points B and C on the right. Given a line and any point A on it, we may consider A as decomposing this line into two parts. Each such part is called a ray and the point A is called its initial point. It is also known as half-line, a one-dimensional half-space. The point A is considered to be a member of the ray.

  8. Euclidean planes in three-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Euclidean_planes_in_three...

    A plane segment or planar region (or simply "plane", in lay use) is a planar surface region; it is analogous to a line segment. A bivector is an oriented plane segment, analogous to directed line segments. [a] A face is a plane segment bounding a solid object. [1] A slab is a region bounded by two parallel planes.

  9. Point–line–plane postulate - Wikipedia

    en.wikipedia.org/wiki/Point–lineplane_postulate

    Every line is a set of points which can be put into a one-to-one correspondence with the real numbers. Any point can correspond with 0 (zero) and any other point can correspond with 1 (one). Dimension assumption. Given a line in a plane, there exists at least one point in the plane that is not on the line. Given a plane in space, there exists ...