Search results
Results from the WOW.Com Content Network
Informally, the expected value is the mean of the possible values a random variable can take, weighted by the probability of those outcomes. Since it is obtained through arithmetic, the expected value sometimes may not even be included in the sample data set; it is not the value you would "expect" to get in reality.
In quantum mechanics, the expectation value is the probabilistic expected value of the result (measurement) of an experiment. It can be thought of as an average of all the possible outcomes of a measurement as weighted by their likelihood, and as such it is not the most probable value of a measurement; indeed the expectation value may have zero probability of occurring (e.g. measurements which ...
In probability theory, the conditional expectation, conditional expected value, or conditional mean of a random variable is its expected value evaluated with respect to the conditional probability distribution. If the random variable can take on only a finite number of values, the "conditions" are that the variable can only take on a subset of ...
In statistics, expected mean squares (EMS) are the expected values of certain statistics arising in partitions of sums of squares in the analysis of variance (ANOVA). They can be used for ascertaining which statistic should appear in the denominator in an F-test for testing a null hypothesis that a particular effect is absent.
To find a second-order approximation for the covariance of functions of two random variables (with the same function applied to both), one can proceed as follows.
The proposition in probability theory known as the law of total expectation, [1] the law of iterated expectations [2] (LIE), Adam's law, [3] the tower rule, [4] and the smoothing theorem, [5] among other names, states that if is a random variable whose expected value is defined, and is any random variable on the same probability space, then
Cost := Value_per_minute_at_home * Time_I_leave_home + (If Time_I_leave_home < Time_from_home_to_gate Then Loss_if_miss_the_plane Else 0) The following graph displays the expected value taking uncertainty into account (the smooth blue curve) to the expected utility ignoring uncertainty, graphed as a function of the decision variable.
Formally, it is the variance of the score, or the expected value of the observed information. The role of the Fisher information in the asymptotic theory of maximum-likelihood estimation was emphasized and explored by the statistician Sir Ronald Fisher (following some initial results by Francis Ysidro Edgeworth).