Search results
Results from the WOW.Com Content Network
The value of the equilibrium constant for the formation of a 1:1 complex, such as a host-guest species, may be calculated with a dedicated spreadsheet application, Bindfit: [4] In this case step 2 can be performed with a non-iterative procedure and the pre-programmed routine Solver can be used for step 3.
The apparent dimension of this K value is concentration 1−p−q; this may be written as M (1−p−q) or mM (1−p−q), where the symbol M signifies a molar concentration (1M = 1 mol dm −3). The apparent dimension of a dissociation constant is the reciprocal of the apparent dimension of the corresponding association constant, and vice versa.
where A and B are reactants C is a product a, b, and c are stoichiometric coefficients,. the reaction rate is often found to have the form: = [] [] Here is the reaction rate constant that depends on temperature, and [A] and [B] are the molar concentrations of substances A and B in moles per unit volume of solution, assuming the reaction is taking place throughout the volume of the ...
The change in the extent of reaction is then defined as [2] [3] d ξ = d n i ν i {\displaystyle d\xi ={\frac {dn_{i}}{\nu _{i}}}} where n i {\displaystyle n_{i}} denotes the number of moles of the i t h {\displaystyle i^{th}} reactant or product and ν i {\displaystyle \nu _{i}} is the stoichiometric number [ 4 ] of the i t h {\displaystyle i ...
with G N + 1 and G N being the free energies of the surfactant in a micelle with aggregation number N + 1 and N respectively. This effect is particularly relevant for nonionic ethoxylated surfactants [16] or polyoxypropylene–polyoxyethylene block copolymers (Poloxamers, Pluronics, Synperonics). [17]
This limit is typically in the −2 to −3 g 0 (−20 to −29 m/s 2) range. This condition is sometimes referred to as red out where vision is literally reddened [12] due to the blood-laden lower eyelid being pulled into the field of vision. [13] Negative g-force is generally unpleasant and can cause damage.
10 −1 M dM decimolar 10 1 M daM decamolar 10 −2 M cM centimolar 10 2 M hM hectomolar 10 −3 M mM millimolar 10 3 M kM kilomolar 10 −6 M μM micromolar 10 6 M MM megamolar 10 −9 M nM nanomolar 10 9 M GM gigamolar 10 −12 M pM picomolar 10 12 M TM teramolar 10 −15 M fM femtomolar 10 15 M PM petamolar 10 −18 M aM attomolar 10 18 M EM
For two bodies, the parameter may be expressed as G(m 1 + m 2), or as GM when one body is much larger than the other: = (+). For several objects in the Solar System, the value of μ is known to greater accuracy than either G or M. The SI unit of the standard gravitational parameter is m 3 ⋅s −2.