Search results
Results from the WOW.Com Content Network
Among the best-known halos is the 22° halo, often just called "halo", which appears as a large ring around the Sun or Moon with a radius of about 22° (roughly the width of an outstretched hand at arm's length).
22° halo around the Sun 22° halo around the Moon. A 22° halo is an atmospheric optical phenomenon that consists of a halo with an apparent diameter of approximately 22° around the Sun or Moon. Around the Sun, it may also be called a sun halo. [1] Around the Moon, it is also known as a moon ring, storm ring, or winter halo.
The corotation circle is the circle around the galactic center of a spiral galaxy, where the stars move at the same speed as the spiral arms. The radius of this circle is called the corotation radius. Inside the circle the stars move faster and outside they move slower than the spiral arms. The Sun is located near the corotation circle of the ...
A parhelic circle is a type of halo, an optical phenomenon appearing as a horizontal white line on the same altitude as the Sun, or occasionally the Moon. If complete, it stretches all around the sky, but more commonly it only appears in sections. [2] If the halo occurs due to light from the Moon rather than the Sun, it is known as a ...
Two sun dogs often flank the Sun within a 22° halo. The sun dog is a member of the family of halos caused by the refraction of sunlight by ice crystals in the atmosphere. Sun dogs typically appear as a pair of subtly colored patches of light, around 22° to the left and right of the Sun, and at the same altitude above the horizon as the Sun ...
The closest encounter to the Sun so far predicted is the low-mass orange dwarf star Gliese 710 / HIP 89825 with roughly 60% the mass of the Sun. [4] It is currently predicted to pass 0.1696 ± 0.0065 ly (10 635 ± 500 au) from the Sun in 1.290 ± 0.04 million years from the present, close enough to significantly disturb the Solar System's Oort ...
The apparent motion of an astronomical object (e.g. the Sun, a planet, or a distant star) around the two celestial poles in the Earth's night sky over the course of one day. Diurnal motion is caused by Earth's rotation about its own axis, such that every object appears to follow a circular path called the diurnal circle. double star
Star trails captured during a total lunar eclipse. In astronomy, diurnal motion (from Latin diurnus 'daily', from Latin diēs 'day') is the apparent motion of celestial objects (e.g. the Sun and stars) around Earth, or more precisely around the two celestial poles, over the course of one day.