enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Dodecahedron

    In geometry, a dodecahedron (from Ancient Greek δωδεκάεδρον (dōdekáedron); from δώδεκα (dṓdeka) 'twelve' and ἕδρα (hédra) 'base, seat, face') or duodecahedron [1] is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentagons as faces, which is a Platonic solid.

  3. Table of polyhedron dihedral angles - Wikipedia

    en.wikipedia.org/wiki/Table_of_polyhedron...

    Picture Name Schläfli symbol Vertex/Face configuration exact dihedral angle (radians) dihedral angle – exact in bold, else approximate (degrees) Platonic solids (regular convex)

  4. Regular dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Regular_dodecahedron

    A regular dodecahedron or pentagonal dodecahedron [notes 1] is a dodecahedron composed of regular pentagonal faces, three meeting at each vertex. It is an example of Platonic solids, described as cosmic stellation by Plato in his dialogues, and it was used as part of Solar System proposed by Johannes Kepler. However, the regular dodecahedron ...

  5. List of Wenninger polyhedron models - Wikipedia

    en.wikipedia.org/wiki/List_of_Wenninger...

    It includes templates of face elements for construction and helpful hints in building, and also brief descriptions on the theory behind these shapes. It contains the 75 nonprismatic uniform polyhedra , as well as 44 stellated forms of the convex regular and quasiregular polyhedra.

  6. Stellation diagram - Wikipedia

    en.wikipedia.org/wiki/Stellation_diagram

    The stellation diagram for the regular dodecahedron with the central pentagon highlighted. This diagram represents the dodecahedron face itself. In geometry, a stellation diagram or stellation pattern is a two-dimensional diagram in the plane of some face of a polyhedron, showing lines where other face planes intersect with this one.

  7. List of uniform polyhedra - Wikipedia

    en.wikipedia.org/wiki/List_of_uniform_polyhedra

    This is left blank for non-orientable polyhedra and hemipolyhedra (polyhedra with faces passing through their centers), for which the density is not well-defined. Note on Vertex figure images: The white polygon lines represent the "vertex figure" polygon. The colored faces are included on the vertex figure images help see their relations.

  8. Platonic solid - Wikipedia

    en.wikipedia.org/wiki/Platonic_solid

    The solid angle of a face subtended from the center of a platonic solid is equal to the solid angle of a full sphere (4 π steradians) divided by the number of faces. This is equal to the angular deficiency of its dual. The various angles associated with the Platonic solids are tabulated below.

  9. Rhombic dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Rhombic_dodecahedron

    The rhombic dodecahedron can be decomposed into six congruent (but non-regular) square dipyramids meeting at a single vertex in the center; these form the images of six pairs of the 24-cell's octahedral cells. The remaining 12 octahedral cells project onto the faces of the rhombic dodecahedron.