enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Numerical continuation - Wikipedia

    en.wikipedia.org/wiki/Numerical_continuation

    A periodic motion is a closed curve in phase space. That is, for some period, ′ = (,), = (). The textbook example of a periodic motion is the undamped pendulum.. If the phase space is periodic in one or more coordinates, say () = (+), with a vector [clarification needed], then there is a second kind of periodic motions defined by

  3. Poincaré–Lindstedt method - Wikipedia

    en.wikipedia.org/wiki/Poincaré–Lindstedt_method

    In perturbation theory, the Poincaré–Lindstedt method or Lindstedt–Poincaré method is a technique for uniformly approximating periodic solutions to ordinary differential equations, when regular perturbation approaches fail.

  4. Three-body problem - Wikipedia

    en.wikipedia.org/wiki/Three-body_problem

    An animation of the figure-8 solution to the three-body problem over a single period T ≃ 6.3259 [13] 20 examples of periodic solutions to the three-body problem. In the 1970s, Michel Hénon and Roger A. Broucke each found a set of solutions that form part of the same family of solutions: the Broucke–Hénon–Hadjidemetriou family. In this ...

  5. Periodic travelling wave - Wikipedia

    en.wikipedia.org/wiki/Periodic_travelling_wave

    The mathematical theory of periodic travelling waves is most fully developed for partial differential equations, but these solutions also occur in a number of other types of mathematical system, including integrodifferential equations, [5] [6] integrodifference equations, [7] coupled map lattices [8] and cellular automata. [9] [10]

  6. Simple harmonic motion - Wikipedia

    en.wikipedia.org/wiki/Simple_harmonic_motion

    Thus simple harmonic motion is a type of periodic motion. If energy is lost in the system, then the mass exhibits damped oscillation. Note if the real space and phase space plot are not co-linear, the phase space motion becomes elliptical. The area enclosed depends on the amplitude and the maximum momentum.

  7. Runge–Kutta–Fehlberg method - Wikipedia

    en.wikipedia.org/wiki/Runge–Kutta–Fehlberg...

    In mathematics, the Runge–Kutta–Fehlberg method (or Fehlberg method) is an algorithm in numerical analysis for the numerical solution of ordinary differential equations. It was developed by the German mathematician Erwin Fehlberg and is based on the large class of Runge–Kutta methods .

  8. Floquet theory - Wikipedia

    en.wikipedia.org/wiki/Floquet_theory

    Floquet theory shows stability in Hill differential equation (introduced by George William Hill) approximating the motion of the moon as a harmonic oscillator in a periodic gravitational field. Bond softening and bond hardening in intense laser fields can be described in terms of solutions obtained from the Floquet theorem.

  9. Hill differential equation - Wikipedia

    en.wikipedia.org/wiki/Hill_differential_equation

    Hill's equation is an important example in the understanding of periodic differential equations. Depending on the exact shape of f ( t ) {\displaystyle f(t)} , solutions may stay bounded for all time, or the amplitude of the oscillations in solutions may grow exponentially. [ 3 ]