Search results
Results from the WOW.Com Content Network
The coefficient of friction (COF), often symbolized by the Greek letter μ, is a dimensionless scalar value which equals the ratio of the force of friction between two bodies and the force pressing them together, either during or at the onset of slipping. The coefficient of friction depends on the materials used; for example, ice on steel has a ...
The SI unit of force is the newton (symbol N), which is the force required to accelerate a one kilogram mass at a rate of one meter per second squared, or kg·m·s −2.The corresponding CGS unit is the dyne, the force required to accelerate a one gram mass by one centimeter per second squared, or g·cm·s −2. A newton is thus equal to ...
Since the Painlevé paradoxes are based on a mechanical model of Coulomb friction, where the calculated friction force can have multiple values when the contact point has no tangential velocity, this is a simplified model of contact. It does, nevertheless, encapsulate the main dynamical effects of friction, such as sticking and slipping zones.
A more sophisticated approach is the non-smooth approach, which uses set-valued force laws to model mechanical systems with unilateral contacts and friction. Consider again the block which slides or sticks on the table. The associated set-valued friction law of type Sgn is depicted in figure 3. Regarding the sliding case, the friction force is ...
Next the force on one side of the bollard is increased to a higher value (e.g., =). This does cause frictional shear stresses in the contact area. In the final situation the bollard exercises a friction force on the rope such that a static situation occurs.
Traction can also refer to the maximum tractive force between a body and a surface, as limited by available friction; when this is the case, traction is often expressed as the ratio of the maximum tractive force to the normal force and is termed the coefficient of traction (similar to coefficient of friction). It is the force which makes an ...
This page was last edited on 28 October 2023, at 04:14 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
Where N, the normal force, is equal to the weight (mass x gravity) of the sitting mass (m T) and F, the loading force, is equal to the weight (mass x gravity) of the hanging mass (m H). To determine the kinetic coefficient of friction the hanging mass is increased or decreased until the mass system moves at a constant speed.