Search results
Results from the WOW.Com Content Network
Pulse-Doppler signal processing separates reflected signals into a number of frequency filters. There is a separate set of filters for each ambiguous range. The I and Q samples described above are used to begin the filtering process. These samples are organized into the m × n matrix of time domain samples shown in the top half of the diagram.
Pulse-Doppler systems measure the range to objects by measuring the elapsed time between sending a pulse of radio energy and receiving a reflection of the object. Radio waves travel at the speed of light, so the distance to the object is the elapsed time multiplied by the speed of light, divided by two – there and back.
Other difficulties arise when the interference covariance matrix is ill-conditioned, making the inversion numerically unstable. [5] In general, this adaptive filtering must be performed for each of the unambiguous range bins in the system, for each target of interest (angle-Doppler coordinates), making for a massive computational burden. [4]
The difference between the sample numbers where reflection signal is found for these two PRF will be about the same as the number of the ambiguous range intervals between the radar and the reflector (i.e.: if the reflection falls in sample 3 for PRF 1 and in sample 5 for PRF 2, then the reflector is in ambiguous range interval 2=5-3).
Pulse width also constrains the range discrimination, that is the capacity of the radar to distinguish between two targets that are close together. At any range, with similar azimuth and elevation angles and as viewed by a radar with an unmodulated pulse, the range resolution is approximately equal in distance to half of the pulse duration ...
In pulsed radar and sonar signal processing, an ambiguity function is a two-dimensional function of propagation delay and Doppler frequency, (,).It represents the distortion of a returned pulse due to the receiver matched filter [1] (commonly, but not exclusively, used in pulse compression radar) of the return from a moving target.
The two dimensions of a radar image are range and cross-range. Radar images of limited patches of terrain can resemble oblique photographs, but not ones taken from the location of the radar. This is because the range coordinate in a radar image is perpendicular to the vertical-angle coordinate of an oblique photo.
Target range resolution determines whether two or more targets moving in close proximity will be detected as individual targets. With higher performance radars, target range resolution—known as high range resolution (HRR)—can be so precise that it may be possible to recognize a specific target (i.e., one that has been seen before) and to ...