Search results
Results from the WOW.Com Content Network
As such, the predicted shape and bond angle of sp 3 hybridization is tetrahedral and 109.5°. This is in open agreement with the true bond angle of 104.45°. The difference between the predicted bond angle and the measured bond angle is traditionally explained by the electron repulsion of the two lone pairs occupying two sp 3 hybridized orbitals.
An ubiquitous example of a hydrogen bond is found between water molecules. In a discrete water molecule, there are two hydrogen atoms and one oxygen atom. The simplest case is a pair of water molecules with one hydrogen bond between them, which is called the water dimer and is often used as a model system. When more molecules are present, as is ...
Detailed water models predict the occurrence of water clusters, as configurations of water molecules whose total energy is a local minimum. [6] [7] [8] Of particular interest are the cyclic clusters (H 2 O) n; these have been predicted to exist for n = 3 to 60. [9] [10] [11] At low temperatures, nearly 50% of water molecules are included in ...
Although hydrogen bonding is a relatively weak attraction compared to the covalent bonds within the water molecule itself, it is responsible for several of the water's physical properties. These properties include its relatively high melting and boiling point temperatures: more energy is required to break the hydrogen bonds between water molecules.
The water dimer consists of two water molecules loosely bound by a hydrogen bond. It is the smallest water cluster . Because it is the simplest model system for studying hydrogen bonding in water, it has been the target of many theoretical [ 1 ] [ 2 ] [ 3 ] (and later experimental) studies that it has been called a "theoretical Guinea pig".
Starch gelatinization is a process of breaking down of intermolecular bonds of starch molecules in the presence of water and heat, allowing the hydrogen bonding sites (the hydroxyl hydrogen and oxygen) to engage more water. This irreversibly dissolves the starch granule in water. Water acts as a plasticizer.
The hydrogen bonds of water are around 23 kJ/mol (compared to a covalent O-H bond at 492 kJ/mol). Of this, it is estimated that 90% is attributable to electrostatics, while the remaining 10% is partially covalent. [95] These bonds are the cause of water's high surface tension [96] and capillary forces.
Hydrogen bonds of the form A--H•••B occur when A and B are two highly electronegative atoms (usually N, O or F) such that A forms a highly polar covalent bond with H so that H has a partial positive charge, and B has a lone pair of electrons which is attracted to this partial positive charge and forms a hydrogen bond.