Search results
Results from the WOW.Com Content Network
It's the point at which the soil cannot sustain any additional load without undergoing continuous deformation, in a manner similar to the behaviour of fluids. Certain properties of the soil, like porosity, shear strength, and volume, reach characteristic values. These properties are intrinsic to the type of soil and its initial conditions. [1]
Creep has caused the soil to spread over this pavement. Creep can also be caused by the expansion of materials such as clay when they are exposed to water. Clay expands when wet, then contracts after drying. The expansion portion pushes downhill, then the contraction results in consolidation at the new offset. Objects resting on top of the soil ...
where R is the rainfall erosivity factor, K is the soil erodibility, [3] [4] L and S are topographic factors representing length and slope, and C and P are cropping management factors. Other factors such as the stone content (referred as stoniness ), which acts as protection against soil erosion, are very significant in Mediterranean countries.
Diagram showing definitions and directions for Darcy's law. Darcy's law states that the volume of flow of the pore fluid through a porous medium per unit time is proportional to the rate of change of excess fluid pressure with distance. The constant of proportionality includes the viscosity of the fluid and the intrinsic permeability of the soil.
For example, limit equilibrium is most commonly used and simple solution method, but it can become inadequate if the slope fails by complex mechanisms (e.g. internal deformation and brittle fracture, progressive creep, liquefaction of weaker soil layers, etc.).
The first modern theoretical models for soil consolidation were proposed in the 1920s by Terzaghi and Fillunger, according to two substantially different approaches. [1] The former was based on diffusion equations in eulerian notation, whereas the latter considered the local Newton’s law for both liquid and solid phases, in which main variables, such as partial pressure, porosity, local ...
Soil structure describes the arrangement of the solid parts of the soil and of the pore spaces located between them (Marshall & Holmes, 1979). [1] Aggregation is the result of the interaction of soil particles through rearrangement, flocculation and cementation.
In geotechnical engineering, a tieback is a structural element installed in soil or rock to transfer applied tensile load into the ground. Typically in the form of a horizontal wire or rod, or a helical anchor, a tieback is commonly used along with other retaining systems (e.g. soldier piles , sheet piles, secant and tangent walls) to provide ...