Search results
Results from the WOW.Com Content Network
In computer science, the count-distinct problem [1] (also known in applied mathematics as the cardinality estimation problem) is the problem of finding the number of distinct elements in a data stream with repeated elements. This is a well-known problem with numerous applications.
The Nested Set model is appropriate where the tree element and one or two attributes are the only data, but is a poor choice when more complex relational data exists for the elements in the tree. Given an arbitrary starting depth for a category of 'Vehicles' and a child of 'Cars' with a child of 'Mercedes', a foreign key table relationship must ...
In the object-oriented application programming paradigm, which is related to database structure design, UML class diagrams may be used for object modeling. In that case, object relationships are modeled using UML associations, and multiplicity is used on those associations to denote cardinality .
The HyperLogLog has three main operations: add to add a new element to the set, count to obtain the cardinality of the set and merge to obtain the union of two sets. Some derived operations can be computed using the inclusion–exclusion principle like the cardinality of the intersection or the cardinality of the difference between two HyperLogLogs combining the merge and count operations.
In SQL (Structured Query Language), the term cardinality refers to the uniqueness of data values contained in a particular column (attribute) of a database table. The lower the cardinality, the more duplicated elements in a column. Thus, a column with the lowest possible cardinality would have the same value for every row.
Cardinality estimation in turn depends on estimates of the selection factor of predicates in the query. Traditionally, database systems estimate selectivities through fairly detailed statistics on the distribution of values in each column, such as histograms. This technique works well for estimation of selectivities of individual predicates.
One of the strongest reasons for using bitmap indexes is that the intermediate results produced from them are also bitmaps and can be efficiently reused in further operations to answer more complex queries. Many programming languages support this as a bit array data structure. For example, Java has the BitSet class and .NET have the BitArray ...
In computer science, Algorithms for Recovery and Isolation Exploiting Semantics, or ARIES, is a recovery algorithm designed to work with a no-force, steal database approach; it is used by IBM Db2, Microsoft SQL Server and many other database systems. [1] IBM Fellow Chandrasekaran Mohan is the primary inventor of the ARIES family of algorithms. [2]