enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Makridakis Competitions - Wikipedia

    en.wikipedia.org/wiki/Makridakis_Competitions

    The time series included yearly, quarterly, monthly, daily, and other time series. In order to ensure that enough data was available to develop an accurate forecasting model, minimum thresholds were set for the number of observations: 14 for yearly series, 16 for quarterly series, 48 for monthly series, and 60 for other series. [1]

  3. Category:Multivariate time series - Wikipedia

    en.wikipedia.org/wiki/Category:Multivariate_time...

    Pages in category "Multivariate time series" The following 15 pages are in this category, out of 15 total. ... Variance decomposition of forecast errors;

  4. Singular spectrum analysis - Wikipedia

    en.wikipedia.org/wiki/Singular_spectrum_analysis

    Multi-channel, Multivariate SSA (or M-SSA) is a natural extension of SSA to for analyzing multivariate time series, where the size of different univariate series does not have to be the same. The trajectory matrix of multi-channel time series consists of linked trajectory matrices of separate times series.

  5. Time series - Wikipedia

    en.wikipedia.org/wiki/Time_series

    Time series analysis comprises methods for analyzing time series data in order to extract meaningful statistics and other characteristics of the data. Time series forecasting is the use of a model to predict future values based on previously observed values.

  6. List of datasets for machine-learning research - Wikipedia

    en.wikipedia.org/wiki/List_of_datasets_for...

    Each file represents a single experiment and contains a single anomaly. The dataset represents a multivariate time series collected from the sensors installed on the testbed. There are two markups for Outlier detection (point anomalies) and Changepoint detection (collective anomalies) problems 30+ files (v0.9) CSV Anomaly detection

  7. Predictive analytics - Wikipedia

    en.wikipedia.org/wiki/Predictive_analytics

    ARIMA univariate and multivariate models can be used in forecasting a company's future cash flows, with its equations and calculations based on the past values of certain factors contributing to cash flows. Using time-series analysis, the values of these factors can be analyzed and extrapolated to predict the future cash flows for a company.

  8. Variance decomposition of forecast errors - Wikipedia

    en.wikipedia.org/wiki/Variance_decomposition_of...

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file

  9. Vector autoregression - Wikipedia

    en.wikipedia.org/wiki/Vector_autoregression

    He recommended VAR models, which had previously appeared in time series statistics and in system identification, a statistical specialty in control theory. Sims advocated VAR models as providing a theory-free method to estimate economic relationships, thus being an alternative to the "incredible identification restrictions" in structural models ...