Search results
Results from the WOW.Com Content Network
Graphs of probability P of not observing independent events each of probability p after n Bernoulli trials vs np for various p.Three examples are shown: Blue curve: Throwing a 6-sided die 6 times gives a 33.5% chance that 6 (or any other given number) never turns up; it can be observed that as n increases, the probability of a 1/n-chance event never appearing after n tries rapidly converges to 0.
However, the conclusion that the sun is equally likely to rise as it is to not rise is only absurd when additional information is known, such as the laws of gravity and the sun's history. Similar applications of the concept are effectively instances of circular reasoning , with "equally likely" events being assigned equal probabilities, which ...
For example, it is the difference between viewing the possible results of rolling a six sided dice as {1,2,3,4,5,6} rather than {6, not 6}. [1] The former (equipossible) set contains equally possible alternatives, while the latter does not because there are five times as many alternatives inherent in 'not 6' as in 6.
The uniform distribution or rectangular distribution on [a,b], where all points in a finite interval are equally likely, is a special case of the four-parameter Beta distribution. The Irwin–Hall distribution is the distribution of the sum of n independent random variables, each of which having the uniform distribution on [0,1].
In probability theory and statistics, the discrete uniform distribution is a symmetric probability distribution wherein each of some finite whole number n of outcome values are equally likely to be observed. Thus every one of the n outcome values has equal probability 1/n. Intuitively, a discrete uniform distribution is "a known, finite number ...
For example, if two fair six-sided dice are thrown to generate two uniformly distributed integers, and , each in the range from 1 to 6, inclusive, the 36 possible ordered pairs of outcomes (,) constitute a sample space of equally likely events. In this case, the above formula applies, such as calculating the probability of a particular sum of ...
In probability theory, an event is a set of outcomes of an experiment (a subset of the sample space) to which a probability is assigned. [1] A single outcome may be an element of many different events, [2] and different events in an experiment are usually not equally likely, since they may include very different groups of outcomes. [3]
For example, when tossing an ordinary coin, one typically assumes that the outcomes "head" and "tail" are equally likely to occur. An implicit assumption that all outcomes are equally likely underpins most randomization tools used in common games of chance (e.g. rolling dice , shuffling cards , spinning tops or wheels, drawing lots , etc.).