Search results
Results from the WOW.Com Content Network
Intuitively, one can think of the inhomogeneous problem as a set of homogeneous problems each starting afresh at a different time slice t = t 0. By linearity, one can add up (integrate) the resulting solutions through time t 0 and obtain the solution for the inhomogeneous problem. This is the essence of Duhamel's principle.
Download as PDF; Printable version; ... "A Gaussian quadrature procedure for use in the solution of the Boltzmann equation and related problems". J. Comput.
The continuous problem is broken into discrete intervals; quadrature or numerical integration determines the weights and locations of representative points for the integral. The problem becomes a system of linear equations with equations and unknowns, and the underlying function is implicitly represented by an interpolation using the chosen ...
Numerical integration has roots in the geometrical problem of finding a square with the same area as a given plane figure (quadrature or squaring), as in the quadrature of the circle. The term is also sometimes used to describe the numerical solution of differential equations .
In mathematics, a collocation method is a method for the numerical solution of ordinary differential equations, partial differential equations and integral equations.The idea is to choose a finite-dimensional space of candidate solutions (usually polynomials up to a certain degree) and a number of points in the domain (called collocation points), and to select that solution which satisfies the ...
It also includes tables for integral transforms. Another advantage of Gradshteyn and Ryzhik compared to computer algebra systems is the fact that all special functions and constants used in the evaluation of the integrals are listed in a registry as well, thereby allowing reverse lookup of integrals based on special functions or constants.
In mathematics, Frullani integrals are a specific type of improper integral named after the Italian mathematician Giuliano Frullani.The integrals are of the form ()where is a function defined for all non-negative real numbers that has a limit at , which we denote by ().
Let (,) be an integral kernel, and consider the homogeneous equation, the Fredholm integral equation, (,) =and the inhomogeneous equation (,) = ().The Fredholm alternative is the statement that, for every non-zero fixed complex number, either the first equation has a non-trivial solution, or the second equation has a solution for all ().