Search results
Results from the WOW.Com Content Network
The odd-dimensional rotation groups do not contain the central inversion and are simple groups. The even-dimensional rotation groups do contain the central inversion −I and have the group C 2 = {I, −I} as their centre. For even n ≥ 6, SO(n) is almost simple in that the factor group SO(n)/C 2 of SO(n) by its centre is a simple group.
A generalization of a rotation applies in special relativity, where it can be considered to operate on a four-dimensional space, spacetime, spanned by three space dimensions and one of time. In special relativity, this space is called Minkowski space, and the four-dimensional rotations, called Lorentz transformations, have a physical ...
Four-dimensional space (4D) is the mathematical extension of the concept of three-dimensional space (3D). Three-dimensional space is the simplest possible abstraction of the observation that one needs only three numbers, called dimensions, to describe the sizes or locations of objects in the everyday world.
1951, A. C. Hurley, Finite rotation groups and crystal classes in four dimensions, Proceedings of the Cambridge Philosophical Society, vol. 47, issue 04, p. 650 [1] 1962 A. L. MacKay Bravais Lattices in Four-dimensional Space [2] 1964 Patrick du Val, Homographies, quaternions and rotations, quaternion-based 4D point groups
In geometry, a plane of rotation is an abstract object used to describe or visualize rotations in space.. The main use for planes of rotation is in describing more complex rotations in four-dimensional space and higher dimensions, where they can be used to break down the rotations into simpler parts.
A sphere rotating (spinning) about an axis. Rotation or rotational motion is the circular movement of an object around a central line, known as an axis of rotation.A plane figure can rotate in either a clockwise or counterclockwise sense around a perpendicular axis intersecting anywhere inside or outside the figure at a center of rotation.
To obtain the spinors of physics, such as the Dirac spinor, one extends the construction to obtain a spin structure on 4-dimensional space-time (Minkowski space). Effectively, one starts with the tangent manifold of space-time, each point of which is a 4-dimensional vector space with SO(3,1) symmetry, and then builds the spin group at
A four-vector A is a vector with a "timelike" component and three "spacelike" components, and can be written in various equivalent notations: [3] = (,,,) = + + + = + = where A α is the magnitude component and E α is the basis vector component; note that both are necessary to make a vector, and that when A α is seen alone, it refers strictly to the components of the vector.