Search results
Results from the WOW.Com Content Network
The methodology used in Timelapse of the Entire Universe. In 2012, a short, one-and-a-half-minute film by Boswell, Our Story in 1 Minute, is published. It is a shorter version of Timelapse of the Entire Universe, specifically in one minute and 29 seconds, and used closed captions to evoke reflection on humanity. It also used imageries from this ...
A similar analogy used to visualize the geologic time scale and the history of life on Earth is the Geologic Calendar. A graphical view of the Cosmic Calendar, featuring the months of the year, days of December, the final minute, and the final second
Vesta (radius 262.7 ± 0.1 km), the second-largest asteroid, appears to have a differentiated interior and therefore likely was once a dwarf planet, but it is no longer very round today. [74] Pallas (radius 255.5 ± 2 km ), the third-largest asteroid, appears never to have completed differentiation and likewise has an irregular shape.
Discovered through gamma-ray burst mapping. Largest-known regular formation in the observable universe. [8] Huge-LQG (2012–2013) 4,000,000,000 [9] [10] [11] Decoupling of 73 quasars. Largest-known large quasar group and the first structure found to exceed 3 billion light-years. "The Giant Arc" (2021) 3,300,000,000 [12] Located 9.2 billion ...
Highest Lowest Highest Lowest Highest Lowest Sun: N/A 5,000,000 K In a solar flare [33] 1240 K In a sunspot [34] Mercury: 3 kilometres (1.9 mi) Caloris Montes, northwest Caloris Basin rim mountains [35] [36] 723 K Dayside of Mercury [37] 89 K Permanently shaded polar craters [38] Venus: 11 kilometres (6.8 mi) Maxwell Montes, Ishtar Terra [39 ...
According to Newton's law of gravity, and independently verified by experiments such as that of Eötvös and its successors (see Eötvös experiment), there is a universality of free fall (also known as the weak equivalence principle, or the universal equality of inertial and passive-gravitational mass): the trajectory of a test body in free ...
The gravity g′ at depth d is given by g′ = g(1 − d/R) where g is acceleration due to gravity on the surface of the Earth, d is depth and R is the radius of the Earth. If the density decreased linearly with increasing radius from a density ρ 0 at the center to ρ 1 at the surface, then ρ ( r ) = ρ 0 − ( ρ 0 − ρ 1 ) r / R , and the ...
Higher-dimensional Einstein gravity is any of various physical theories that attempt to generalise to higher dimensions various results of the well established theory of standard (four-dimensional) Albert Einstein's gravitational theory, that is, general relativity.