enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. DNA and RNA codon tables - Wikipedia

    en.wikipedia.org/wiki/DNA_and_RNA_codon_tables

    A codon table can be used to translate a genetic code into a sequence of amino acids. [1] [2] The standard genetic code is traditionally represented as an RNA codon table, because when proteins are made in a cell by ribosomes, it is messenger RNA (mRNA) that directs protein synthesis. [2] [3] The mRNA sequence is determined by the sequence of ...

  3. Nucleic acid sequence - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_sequence

    The sequence of nucleobases on a nucleic acid strand is translated by cell machinery into a sequence of amino acids making up a protein strand. Each group of three bases, called a codon, corresponds to a single amino acid, and there is a specific genetic code by which each possible combination of three bases corresponds to a specific amino acid.

  4. Nucleotide base - Wikipedia

    en.wikipedia.org/wiki/Nucleotide_base

    It differs in having an extra amine group, creating a more stable bond to thymine. [3] Adenine and guanine have a fused-ring skeletal structure derived of purine, hence they are called purine bases. [4] The purine nitrogenous bases are characterized by their single amino group (−NH 2), at the C6 carbon in adenine and C2 in guanine. [5]

  5. DNA - Wikipedia

    en.wikipedia.org/wiki/DNA

    A section of DNA. The bases lie horizontally between the two spiraling strands [15] (animated version). The DNA double helix is stabilized primarily by two forces: hydrogen bonds between nucleotides and base-stacking interactions among aromatic nucleobases. [16] The four bases found in DNA are adenine (A), cytosine (C), guanine (G) and thymine (T).

  6. Nucleic acid - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid

    The bases found in RNA and DNA are: adenine, cytosine, guanine, thymine, and uracil. Thymine occurs only in DNA and uracil only in RNA. Using amino acids and protein synthesis, [2] the specific sequence in DNA of these nucleobase-pairs helps to keep and send coded instructions as genes. In RNA, base-pair sequencing helps to make new proteins ...

  7. Nucleic acid structure - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_structure

    The most favored conformation occurs when there are high salt concentrations. There are some base substitutions but they require an alternating purine-pyrimidine sequence. The N2-amino of G H-bonds to 5' PO, which explains the slow exchange of protons and the need for the G purine. Z-DNA base pairs are nearly perpendicular to the helix axis.

  8. Biomolecular structure - Wikipedia

    en.wikipedia.org/wiki/Biomolecular_structure

    The primary structure of a biopolymer is the exact specification of its atomic composition and the chemical bonds connecting those atoms (including stereochemistry).For a typical unbranched, un-crosslinked biopolymer (such as a molecule of a typical intracellular protein, or of DNA or RNA), the primary structure is equivalent to specifying the sequence of its monomeric subunits, such as amino ...

  9. Nucleotide - Wikipedia

    en.wikipedia.org/wiki/Nucleotide

    This nucleotide contains the five-carbon sugar deoxyribose (at center), a nucleobase called adenine (upper right), and one phosphate group (left). The deoxyribose sugar joined only to the nitrogenous base forms a Deoxyribonucleoside called deoxyadenosine, whereas the whole structure along with the phosphate group is a nucleotide, a constituent of DNA with the name deoxyadenosine monophosphate.