Search results
Results from the WOW.Com Content Network
Hyperacusis is an increased sensitivity to sound and a low tolerance for environmental noise. Definitions of hyperacusis can vary significantly; it often revolves around damage to or dysfunction of the stapes bone, stapedius muscle or tensor tympani ().
Increased touch sensitivity is referred to as "tactile hyperesthesia", and increased sound sensitivity is called "auditory hyperesthesia". In the context of pain, hyperaesthesia can refer to an increase in sensitivity where there is both allodynia and hyperalgesia .
Auditory sensitivity changes when the duration of a sound becomes less than 1 second. The threshold intensity decreases by about 10 dB when the duration of a tone burst is increased from 20 to 200 ms. For example, suppose that the quietest sound a subject can hear is 16 dB SPL if the sound is presented at a duration of 200 ms.
People with misophonia display hypersensitivity to certain pattern-based noises such as the sound of chewing, slurping, finger tapping, foot shuffling, throat clearing, pen clicking, and keyboard tapping; people with misophonia respond to triggering sounds with emotional distress and increased hormonal activity of the sympathetic system. [18]
Hyperacusis – Increased sensitivity to sound and decreased tolerance of noise Hyperesthesia – Abnormal increase in sensitivity to sensory stimuli Misophonia – Disorder of decreased tolerance to specific sounds
Annoyance effects of noise are minimally affected by demographics, but fear of the noise source and sensitivity to noise both strongly affect the 'annoyance' of a noise. [42] Sound levels as low as 40 dB(A) can generate noise complaints [43] and the lower threshold for noise producing sleep disturbance is 45 dB(A) or lower. [44]
Noise-induced hearing loss (NIHL) is a hearing impairment resulting from exposure to loud sound.People may have a loss of perception of a narrow range of frequencies or impaired perception of sound including sensitivity to sound or ringing in the ears. [1]
The sensitivity of the human ear changes as a function of frequency, as shown in the equal-loudness graph. Each line on this graph shows the SPL required for frequencies to be perceived as equally loud, and different curves pertain to different sound pressure levels.