Search results
Results from the WOW.Com Content Network
First, a square is an integer which is the square of an integer. Some numbers are squares, while others are not; therefore, all the numbers, including both squares and non-squares, must be more numerous than just the squares. And yet, for every number there is exactly one square; hence, there cannot be more of one than of the other.
The square of the absolute value of a complex number is called its absolute square, squared modulus, or squared magnitude. [1] [better source needed] It is the product of the complex number with its complex conjugate, and equals the sum of the squares of the real and imaginary parts of the complex number.
The formula for the difference of two squares can be used for factoring polynomials that contain the square of a first quantity minus the square of a second quantity. For example, the polynomial x 4 − 1 {\displaystyle x^{4}-1} can be factored as follows:
Square number 16 as sum of gnomons. In mathematics, a square number or perfect square is an integer that is the square of an integer; [1] in other words, it is the product of some integer with itself. For example, 9 is a square number, since it equals 3 2 and can be written as 3 × 3.
The smallest (and unique up to rotation and reflection) non-trivial case of a magic square, order 3. In mathematics, especially historical and recreational mathematics, a square array of numbers, usually positive integers, is called a magic square if the sums of the numbers in each row, each column, and both main diagonals are the same.
In mathematics, a property is any characteristic that applies to a given set. [1] Rigorously, a property p defined for all elements of a set X is usually defined as a function p: X → {true, false}, that is true whenever the property holds; or, equivalently, as the subset of X for which p holds; i.e. the set {x | p(x) = true}; p is its indicator function.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Given a quadratic polynomial of the form + + it is possible to factor out the coefficient a, and then complete the square for the resulting monic polynomial. Example: + + = [+ +] = [(+) +] = (+) + = (+) + This process of factoring out the coefficient a can further be simplified by only factorising it out of the first 2 terms.