Search results
Results from the WOW.Com Content Network
Steel grades to classify various steels by their composition and physical properties have been developed by a number of standards organizations.
The SAE steel grades system is a standard alloy numbering system (SAE J1086 – Numbering Metals and Alloys) for steel grades maintained by SAE International. In the 1930s and 1940s, the American Iron and Steel Institute (AISI) and SAE were both involved in efforts to standardize such a numbering system for steels. These efforts were similar ...
EN 10025 - Hot rolled products of structural steels refers to a set of European standards which specify the technical delivery conditions for hot rolled products of structural steels.
Steel never turns into a liquid below this temperature. Pure Iron ('Steel' with 0% Carbon) starts to melt at 1,492 °C (2,718 °F), and is completely liquid upon reaching 1,539 °C (2,802 °F). Steel with 2.1% Carbon by weight begins melting at 1,130 °C (2,070 °F), and is completely molten upon reaching 1,315 °C (2,399 °F).
2. Application of ASTM A53 Standard Pipes Steel Pipes ordered under this specification is intended for mechanical and pressure applications and is also acceptable for ordinary uses in steam, water, gas, and air lines. It is suitable for welding, and suitable for forming operations involving coiling, bending, and flanging. 3.
The main differences in composition, when compared with austenitic stainless steel is that duplex steels have a higher chromium content, 20–28%; higher molybdenum, up to 5%; lower nickel, up to 9% and 0.05–0.50% nitrogen. Both the low nickel content and the high strength (enabling thinner sections to be used) give significant cost benefits.
HSLA steel cross-sections and structures are usually 20 to 30% lighter than a carbon steel with the same strength. [3] [4] HSLA steels are also more resistant to rust than most carbon steels because of their lack of pearlite – the fine layers of ferrite (almost pure iron) and cementite in pearlite. [5]
SVCM steel is a kind of shock-resisting steel. [5] SVCM steel is an alloy of carbon, silicon, chromium, magnesium, nickel, molybdenum and lead. [6] SVCM+ in addition is quenched and tempered achieving a high hardness (HRC 59). [6] SCVM+ has better torsional properties than chromium-vanadium steel (Cr-V). [7]