Search results
Results from the WOW.Com Content Network
In computer programming, the stride of an array (also referred to as increment, pitch or step size) is the number of locations in memory between beginnings of successive array elements, measured in bytes or in units of the size of the array's elements. The stride cannot be smaller than the element size but can be larger, indicating extra space ...
In the second phase, the heap is converted to a sorted array by repeatedly removing the largest element from the heap (the root of the heap), and placing it at the end of the array. The heap is updated after each removal to maintain the heap property. Once all objects have been removed from the heap, the result is a sorted array.
Removing the smallest or largest element from (respectively) a min-heap or max-heap. Binary heaps are also commonly employed in the heapsort sorting algorithm , which is an in-place algorithm because binary heaps can be implemented as an implicit data structure , storing keys in an array and using their relative positions within that array to ...
Whenever the sum of the current element in the first array and the current element in the second array is more than T, the algorithm moves to the next element in the first array. If it is less than T, the algorithm moves to the next element in the second array. If two elements that sum to T are found, it stops. (The sub-problem for two elements ...
For example, for the array of values [−2, 1, −3, 4, −1, 2, 1, −5, 4], the contiguous subarray with the largest sum is [4, −1, 2, 1], with sum 6. Some properties of this problem are: If the array contains all non-negative numbers, then the problem is trivial; a maximum subarray is the entire array.
Example of Min-max heap. Each node in a min-max heap has a data member (usually called key) whose value is used to determine the order of the node in the min-max heap. The root element is the smallest element in the min-max heap. One of the two elements in the second level, which is a max (or odd) level, is the greatest element in the min-max heap
In computer science, selection sort is an in-place comparison sorting algorithm.It has a O(n 2) time complexity, which makes it inefficient on large lists, and generally performs worse than the similar insertion sort.
Programming languages or their standard libraries that support multi-dimensional arrays typically have a native row-major or column-major storage order for these arrays. Row-major order is used in C / C++ / Objective-C (for C-style arrays), PL/I , [ 4 ] Pascal , [ 5 ] Speakeasy , [ citation needed ] and SAS .