enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Involutory matrix - Wikipedia

    en.wikipedia.org/wiki/Involutory_matrix

    An involution is non-defective, and each eigenvalue equals , so an involution diagonalizes to a signature matrix. A normal involution is Hermitian (complex) or symmetric (real) and also unitary (complex) or orthogonal (real). The determinant of an involutory matrix over any field is ±1. [4]

  3. Involution (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Involution_(mathematics)

    An involution is a function f : X → X that, when applied twice, brings one back to the starting point. In mathematics, an involution, involutory function, or self-inverse function [1] is a function f that is its own inverse, f(f(x)) = x. for all x in the domain of f. [2] Equivalently, applying f twice produces the original value.

  4. Affine involution - Wikipedia

    en.wikipedia.org/wiki/Affine_involution

    If A represents a linear involution, then x→A(x−b)+b is an affine involution. One can check that any affine involution in fact has this form. Geometrically this means that any affine involution can be obtained by taking oblique reflections against any number from 0 through n hyperplanes going through a point b.

  5. Semigroup with involution - Wikipedia

    en.wikipedia.org/wiki/Semigroup_with_involution

    If S is a commutative semigroup then the identity map of S is an involution.; If S is a group then the inversion map * : S → S defined by x* = x −1 is an involution. Furthermore, on an abelian group both this map and the one from the previous example are involutions satisfying the axioms of semigroup with involution.

  6. Inversive geometry - Wikipedia

    en.wikipedia.org/wiki/Inversive_geometry

    To construct the inverse P ' of a point P outside a circle Ø: . Draw the segment from O (center of circle Ø) to P.; Let M be the midpoint of OP. (Not shown) Draw the circle c with center M going through P.

  7. C*-algebra - Wikipedia

    en.wikipedia.org/wiki/C*-algebra

    It is also closed under involution; hence it is a C*-algebra. Concrete C*-algebras of compact operators admit a characterization similar to Wedderburn's theorem for finite dimensional C*-algebras: Theorem. If A is a C*-subalgebra of K(H), then there exists Hilbert spaces {H i} i∈I such that

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Binomial transform - Wikipedia

    en.wikipedia.org/wiki/Binomial_transform

    for the transformation, where T is an infinite-dimensional operator with matrix elements T nk. The transform is an involution, that is, = or, using index notation, = = where is the Kronecker delta. The original series can be regained by