Search results
Results from the WOW.Com Content Network
In machine learning, hyperparameter optimization [1] or tuning is the problem of choosing a set of optimal hyperparameters for a learning algorithm. A hyperparameter is a parameter whose value is used to control the learning process, which must be configured before the process starts. [2]
In machine learning, a hyperparameter is a parameter that can be set in order to define any configurable part of a model's learning process. Hyperparameters can be classified as either model hyperparameters (such as the topology and size of a neural network) or algorithm hyperparameters (such as the learning rate and the batch size of an optimizer).
In machine learning and statistics, the learning rate is a tuning parameter in an optimization algorithm that determines the step size at each iteration while moving toward a minimum of a loss function. [1]
A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]
It was difficult to train, and required careful hyperparameter tuning and a "warm-up" in learning rate, where it starts small and gradually increases. The pre-LN convention, proposed several times in 2018, [ 28 ] was found to be easier to train, requiring no warm-up, leading to faster convergence.
A conceptually simple extension of stochastic gradient descent makes the learning rate a decreasing function η t of the iteration number t, giving a learning rate schedule, so that the first iterations cause large changes in the parameters, while the later ones do only fine-tuning.
Today's Wordle Answer for #1257 on Wednesday, November 27, 2024. Today's Wordle answer on Wednesday, November 27, 2024, is SLANG. How'd you do? Next: Catch up on other Wordle answers from this week.
In 2021, a very simple NN architecture combining two deep MLPs with skip connections and layer normalizations was designed and called MLP-Mixer; its realizations featuring 19 to 431 millions of parameters were shown to be comparable to vision transformers of similar size on ImageNet and similar image classification tasks. [25]