Search results
Results from the WOW.Com Content Network
Photosynthesis (/ ˌ f oʊ t ə ˈ s ɪ n θ ə s ɪ s / FOH-tə-SINTH-ə-sis) [1] is a system of biological processes by which photosynthetic organisms, such as most plants, algae, and cyanobacteria, convert light energy, typically from sunlight, into the chemical energy necessary to fuel their metabolism.
The Calvin cycle, light-independent reactions, bio synthetic phase, dark reactions, or photosynthetic carbon reduction (PCR) cycle [1] of photosynthesis is a series of chemical reactions that convert carbon dioxide and hydrogen-carrier compounds into glucose.
The overall general equation for the light-independent reactions is the following: [11] 3 CO 2 + 9 ATP + 6 NADPH + 6 H + → C 3 H 6 O 3-phosphate + 9 ADP + 8 P i + 6 NADP + + 3 H 2 O. The 3-carbon products (C 3 H 6 O 3-phosphate) of the Calvin cycle are later converted to glucose or other carbohydrates such as starch, sucrose, and cellulose.
CO 2 + H 2 O + RuBP → (2) 3-phosphoglycerate. This reaction was first discovered by Melvin Calvin, Andrew Benson and James Bassham in 1950. [1] C 3 carbon fixation occurs in all plants as the first step of the Calvin–Benson cycle. (In C 4 and CAM plants, carbon dioxide is drawn out of malate and into this reaction rather than directly from ...
Ecosystem respiration is the sum of all respiration occurring by the living organisms in a specific ecosystem. [1] The two main processes that contribute to ecosystem respiration are photosynthesis and cellular respiration. Photosynthesis uses carbon-dioxide and water, in the presence of sunlight to produce glucose and oxygen whereas cellular ...
The CO 2 compensation point (Γ) is the CO 2 concentration at which the rate of photosynthesis exactly matches the rate of respiration. There is a significant difference in Γ between C 3 plants and C 4 plants: on land, the typical value for Γ in a C 3 plant ranges from 40–100 μmol/mol, while in C 4 plants the values are lower at 3–10 μmol/mol. Plants with a weaker CCM, such as C2 ...
P870 → P870 * → ubiquinone → cyt bc 1 → cyt c 2 → P870. This is a cyclic process in which electrons are removed from an excited chlorophyll molecule (bacteriochlorophyll; P870), passed through an electron transport chain to a proton pump (cytochrome bc 1 complex; similar to the chloroplastic one), and then returned to the chlorophyll ...
The following is a breakdown of the energetics of the photosynthesis process from Photosynthesis by Hall and Rao: [6]. Starting with the solar spectrum falling on a leaf, 47% lost due to photons outside the 400–700 nm active range (chlorophyll uses photons between 400 and 700 nm, extracting the energy of one 700 nm photon from each one)