Search results
Results from the WOW.Com Content Network
This type of deep learning network has been applied to process and make predictions from many different types of data including text, images and audio. [1] Convolution-based networks are the de-facto standard in deep learning-based approaches to computer vision and image processing, and have only recently been replaced -- in some cases -- by ...
2D convolution with an M × N kernel requires M × N multiplications for each sample (pixel). If the kernel is separable, then the computation can be reduced to M + N multiplications. Using separable convolutions can significantly decrease the computation by doing 1D convolution twice instead of one 2D convolution. [2]
In artificial neural networks, a convolutional layer is a type of network layer that applies a convolution operation to the input. Convolutional layers are some of the primary building blocks of convolutional neural networks (CNNs), a class of neural network most commonly applied to images, video, audio, and other data that have the property of uniform translational symmetry.
Its impulse response is defined by a sinusoidal wave (a plane wave for 2D Gabor filters) multiplied by a Gaussian function. [6] Because of the multiplication-convolution property (Convolution theorem), the Fourier transform of a Gabor filter's impulse response is the convolution of the Fourier transform of the harmonic function (sinusoidal function) and the Fourier transform of the Gaussian ...
As an example, a single 5×5 convolution can be factored into 3×3 stacked on top of another 3×3. Both has a receptive field of size 5×5. The 5×5 convolution kernel has 25 parameters, compared to just 18 in the factorized version. Thus, the 5×5 convolution is strictly more powerful than the factorized version.
The Feature-based Morphometry (FBM) technique [37] uses extrema in a difference of Gaussian scale-space to analyze and classify 3D magnetic resonance images (MRIs) of the human brain. FBM models the image probabilistically as a collage of independent features, conditional on image geometry and group labels, e.g. healthy subjects and subjects ...
This wave of activity, called a cortical spreading depression, follows a particular pattern across the brain and can create a few different patterns of light in your vision. For example, the Mayo ...
The ImageNet training set contained 1.2 million images. The model was trained for 90 epochs over a period of five to six days using two Nvidia GTX 580 GPUs (3GB each). [1] These GPUs have a theoretical performance of 1.581 TFLOPS in float32 and were priced at US$500 upon release. [3] Each forward pass of AlexNet required approximately 4 GFLOPs. [4]