enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nowhere continuous function - Wikipedia

    en.wikipedia.org/wiki/Nowhere_continuous_function

    In mathematics, a nowhere continuous function, also called an everywhere discontinuous function, is a function that is not continuous at any point of its domain.If is a function from real numbers to real numbers, then is nowhere continuous if for each point there is some > such that for every >, we can find a point such that | | < and | () |.

  3. Blumberg theorem - Wikipedia

    en.wikipedia.org/wiki/Blumberg_theorem

    Similarly, every additive function that is not linear (that is, not of the form for some constant ) is a nowhere continuous function whose restriction to is continuous (such functions are the non-trivial solutions to Cauchy's functional equation). This raises the question: can such a dense subset always be found?

  4. Weierstrass function - Wikipedia

    en.wikipedia.org/wiki/Weierstrass_function

    It turns out that the Weierstrass function is far from being an isolated example: although it is "pathological", it is also "typical" of continuous functions: In a topological sense: the set of nowhere-differentiable real-valued functions on [0, 1] is comeager in the vector space C ([0, 1]; R ) of all continuous real-valued functions on [0, 1 ...

  5. Dirichlet function - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_function

    The Dirichlet function can be constructed as the double pointwise limit of a sequence of continuous functions, as follows: , = ((⁡ (!))) for integer j and k. This shows that the Dirichlet function is a Baire class 2 function.

  6. Darboux's theorem (analysis) - Wikipedia

    en.wikipedia.org/wiki/Darboux's_theorem_(analysis)

    An example of a Darboux function that is nowhere continuous is the Conway base 13 function. Darboux functions are a quite general class of functions. It turns out that any real-valued function ƒ on the real line can be written as the sum of two Darboux functions. [5]

  7. Pathological (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Pathological_(mathematics)

    A classic example of a pathology is the Weierstrass function, a function that is continuous everywhere but differentiable nowhere. [1] The sum of a differentiable function and the Weierstrass function is again continuous but nowhere differentiable; so there are at least as many such functions as differentiable functions.

  8. Conway base 13 function - Wikipedia

    en.wikipedia.org/wiki/Conway_base_13_function

    The Conway base 13 function is a function created by British mathematician John H. Conway as a counterexample to the converse of the intermediate value theorem.In other words, it is a function that satisfies a particular intermediate-value property — on any interval (,), the function takes every value between () and () — but is not continuous.

  9. Thomae's function - Wikipedia

    en.wikipedia.org/wiki/Thomae's_function

    A natural follow-up question one might ask is if there is a function which is continuous on the rational numbers and discontinuous on the irrational numbers. This turns out to be impossible. The set of discontinuities of any function must be an F σ set. If such a function existed, then the irrationals would be an F σ set.