Search results
Results from the WOW.Com Content Network
The spindle assembly checkpoint (SAC) is an active signal produced by improperly attached kinetochores, which is conserved in all eukaryotes. The SAC stops the cell cycle by negatively regulating CDC20, thereby preventing the activation of the polyubiquitynation activities of anaphase promoting complex (APC).
[[Category:Signaling pathway templates]] to the <includeonly> section at the bottom of that page. Otherwise, add <noinclude>[[Category:Signaling pathway templates]]</noinclude> to the end of the template code, making sure it starts on the same line as the code's last character.
The eukaryotic cell cycle consists of four distinct phases: G 1 phase, S phase (synthesis), G 2 phase (collectively known as interphase) and M phase (mitosis and cytokinesis). M phase is itself composed of two tightly coupled processes: mitosis, in which the cell's nucleus divides, and cytokinesis, in which the cell's cytoplasm and cell membrane divides forming two daughter cells.
In biology, cell signaling (cell signalling in British English) is the process by which a cell interacts with itself, other cells, and the environment. Cell signaling is a fundamental property of all cellular life in prokaryotes and eukaryotes. Typically, the signaling process involves three components: the signal, the receptor, and the effector.
Steps of the cell cycle. The restriction point occurs between the G 1 and S phases of interphase.. The restriction point (R), also known as the Start or G 1 /S checkpoint, is a cell cycle checkpoint in the G 1 phase of the animal cell cycle at which the cell becomes "committed" to the cell cycle, and after which extracellular signals are no longer required to stimulate proliferation. [1]
Multiple pathways are involved in the checkpoint response and thus, the targeting of Cdc25 is not the sole mechanism underlying cell cycle delay, as some models have proposed. The cooperativity between the positive regulation of Wee1 and the negative regulation of Cdc25 by Chk1 in response to unreplicated or damaged DNA results in a strong G2 ...
The KEGG PATHWAY database is a collection of manually drawn pathway maps for metabolism, genetic information processing, environmental information processing such as signal transduction, ligand–receptor interaction and cell communication, various other cellular processes and human diseases, all based on extensive survey of published literature.
DNA damage induces the activation of Chk1 which facilitates the initiation of the DNA damage response (DDR) and cell cycle checkpoints. The DNA damage response is a network of signaling pathways that leads to activation of checkpoints, DNA repair and apoptosis to inhibit damaged cells from progressing through the cell cycle.