Search results
Results from the WOW.Com Content Network
If A is a set, then the absolute complement of A (or simply the complement of A) is the set of elements not in A (within a larger set that is implicitly defined). In other words, let U be a set that contains all the elements under study; if there is no need to mention U, either because it has been previously specified, or it is obvious and unique, then the absolute complement of A is the ...
The complement of the intersection of two sets is the same as the union of their complements; or not (A or B) = (not A) and (not B) not (A and B) = (not A) or (not B) where "A or B" is an "inclusive or" meaning at least one of A or B rather than an "exclusive or" that means exactly one of A or B. De Morgan's law with set subtraction operation
Universe set and complement notation The notation L ∁ = def X ∖ L . {\displaystyle L^{\complement }~{\stackrel {\scriptscriptstyle {\text{def}}}{=}}~X\setminus L.} may be used if L {\displaystyle L} is a subset of some set X {\displaystyle X} that is understood (say from context, or because it is clearly stated what the superset X ...
The algebra of sets is the set-theoretic analogue of the algebra of numbers. Just as arithmetic addition and multiplication are associative and commutative, so are set union and intersection; just as the arithmetic relation "less than or equal" is reflexive, antisymmetric and transitive, so is the set relation of "subset".
In this Boolean algebra, union can be expressed in terms of intersection and complementation by the formula = (), where the superscript denotes the complement in the universal set . Alternatively, intersection can be expressed in terms of union and complementation in a similar way: A ∩ B = ( A ∁ ∪ B ∁ ) ∁ {\displaystyle A\cap B ...
P(U) is assumed closed under union, intersection, and set complement. The algebra of sets is an interpretation or model of Boolean algebra, with union, intersection, set complement, U, and {} interpreting Boolean sum, product, complement, 1, and 0, respectively.
So the intersection of the empty family should be the universal set (the identity element for the operation of intersection), [4] but in standard set theory, the universal set does not exist. However, when restricted to the context of subsets of a given fixed set X {\displaystyle X} , the notion of the intersection of an empty collection of ...
It is denoted by A ∪ B. The intersection of A and B is the set of all objects which are both in A and in B. It is denoted by A ∩ B. Finally, the relative complement of B relative to A, also known as the set theoretic difference of A and B, is the set of all objects that belong to A but not to B. It is written as A \ B or A − B.