Search results
Results from the WOW.Com Content Network
Endochondral ossification is responsible for development of most bones including long and short bones, [4] the bones of the axial (ribs and vertebrae) and the appendicular skeleton (e.g. upper and lower limbs), [5] the bones of the skull base (including the ethmoid and sphenoid bones) [6] and the medial end of the clavicle. [7]
The following bones develop in humans via Intramembranous ossification: [3] Flat bones of the face; Most of the bones of the skull; Clavicles; Other bone that formed by intramembranous ossification are: cortices of tubular and flat bones as well as the calvaria, upper facial bones, tympanic temporal bone, vomer, and medial pterygoid process. [4]
The formation of bone is called ossification. During the fetal stage of development this occurs by two processes: intramembranous ossification and endochondral ossification. [42] Intramembranous ossification involves the formation of bone from connective tissue whereas endochondral ossification involves the formation of bone from cartilage.
This decreases bone formation, and is not a problem when a person has healthy bones. [126] It is thought, though, that decreasing the concentration of sclerostin in the body may lead to the formation of more bone, and that is the premise as to why monoclonal antibodies that reduce the concentrations of naturally occurring sclerostin may help ...
The three main mechanisms by which osteoporosis develops are an inadequate peak bone mass (the skeleton develops insufficient mass and strength during growth), excessive bone resorption, and inadequate formation of new bone during remodeling, likely due to mesenchymal stem cells biasing away from the osteoblast and toward the marrow adipocyte ...
The PDL is a part of the periodontium that provides for the attachment of the teeth to the surrounding alveolar bone by way of the cementum. PDL fibres also provide a role in load transfer between the teeth and alveolar bone. (PDL fibers absorb and transmit forces between teeth and alveolar bone.
The number of vertebrae in a region can vary but overall the number remains the same. In a human spinal column, there are normally 33 vertebrae. [3] The upper 24 pre-sacral vertebrae are articulating and separated from each other by intervertebral discs, and the lower nine are fused in adults, five in the sacrum and four in the coccyx, or tailbone.
During development, the animal extracellular matrix forms a relatively flexible framework upon which cells can move about and be reorganised, making the formation of complex structures possible. This may be calcified, forming structures such as shells , bones , and spicules . [ 24 ]