Search results
Results from the WOW.Com Content Network
where b is the number base (10 for decimal), and p is a prime that does not divide b. (Primes p that give cyclic numbers in base b are called full reptend primes or long primes in base b). For example, the case b = 10, p = 7 gives the cyclic number 142857, and the case b = 12, p = 5 gives the cyclic number 2497.
Therefore, the base b expansion of / repeats the digits of the corresponding cyclic number infinitely, as does that of / with rotation of the digits for any a between 1 and p − 1. The cyclic number corresponding to prime p will possess p − 1 digits if and only if p is a full reptend prime.
A cyclic number [1] [2] is a natural number n such that n and φ(n) are coprime. Here φ is Euler's totient function. An equivalent definition is that a number n is cyclic if and only if any group of order n is cyclic. [3] Any prime number is clearly cyclic. All cyclic numbers are square-free. [4] Let n = p 1 p 2 …
A full reptend prime, full repetend prime, proper prime [7]: 166 or long prime in base b is an odd prime number p such that the Fermat quotient = (where p does not divide b) gives a cyclic number with p − 1 digits.
A cyclic group is a group which is equal to one of its cyclic subgroups: G = g for some element g, called a generator of G. For a finite cyclic group G of order n we have G = {e, g, g 2, ... , g n−1}, where e is the identity element and g i = g j whenever i ≡ j (mod n); in particular g n = g 0 = e, and g −1 = g n−1.
Consuming more than 45% of daily calories after 5 p.m. can contribute to greater risk of type 2 diabetes, cardiovascular problems, and chronic inflammation, a recent study suggests.
142,857 is the natural number following 142,856 and preceding 142,858. It is a Kaprekar number. [1]142857, the six repeating digits of 1 / 7 (0. 142857), is the best-known cyclic number in base 10.
AOL