Search results
Results from the WOW.Com Content Network
Face detection is gaining the interest of marketers. A webcam can be integrated into a television and detect any face that walks by. The system then calculates the race, gender, and age range of the face. Once the information is collected, a series of advertisements can be played that is specific toward the detected race/gender/age.
FaceNet is a facial recognition system developed by Florian Schroff, Dmitry Kalenichenko and James Philbina, a group of researchers affiliated with Google.The system was first presented at the 2015 IEEE Conference on Computer Vision and Pattern Recognition. [1]
Facial coding is the process of measuring human emotions through facial expressions. Emotions can be detected by computer algorithms for automatic emotion recognition that record facial expressions via webcam. This can be applied to better understanding of people’s reactions to visual stimuli.
Facial recognition software at a US airport Automatic ticket gate with face recognition system in Osaka Metro Morinomiya Station. A facial recognition system [1] is a technology potentially capable of matching a human face from a digital image or a video frame against a database of faces.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
Objects detected with OpenCV's Deep Neural Network module (dnn) by using a YOLOv3 model trained on COCO dataset capable to detect objects of 80 common classes. Object detection is a computer technology related to computer vision and image processing that deals with detecting instances of semantic objects of a certain class (such as humans, buildings, or cars) in digital images and videos. [1]
Finding facial landmarks is an important step in facial identification of people in an image. Facial landmarks can also be used to extract information about mood and intention of the person. [ 1 ] Methods used fall in to three categories: holistic methods, constrained local model methods, and regression -based methods.
F(0) = 1.0; D(0) = 1.0; i = 0 while F(i) > Ftarget increase i n(i) = 0; F(i)= F(i-1) while F(i) > f × F(i-1) increase n(i) use P and N to train a classifier with n(i) features using AdaBoost Evaluate current cascaded classifier on validation set to determine F(i) and D(i) decrease threshold for the ith classifier (i.e. how many weak ...