Search results
Results from the WOW.Com Content Network
This proves that all points in the intersection are the same distance from the point E in the plane P, in other words all points in the intersection lie on a circle C with center E. [5] This proves that the intersection of P and S is contained in C. Note that OE is the axis of the circle. Now consider a point D of the circle C. Since C lies in ...
In a doubly linked list, one can insert or delete a node in a constant number of operations given only that node's address. To do the same in a singly linked list, one must have the address of the pointer to that node, which is either the handle for the whole list (in case of the first node) or the link field in the previous node. Some ...
The mapping from 3D to 2D coordinates is (x′, y′) = ( x / w , y / w ). We can convert 2D points to homogeneous coordinates by defining them as (x, y, 1). Assume that we want to find intersection of two infinite lines in 2-dimensional space, defined as a 1 x + b 1 y + c 1 = 0 and a 2 x + b 2 y + c 2 = 0.
It is an easy task to determine the intersection points of a line with a quadric (i.e. line-sphere); one only has to solve a quadratic equation. So, any intersection curve of a cone or a cylinder (they are generated by lines) with a quadric consists of intersection points of lines and the quadric (see pictures).
Cyan line has a single point of intersection. Green line has two intersections. Yellow line lies tangent to the cylinder, so has infinitely many points of intersection. Line-cylinder intersection is the calculation of any points of intersection, given an analytic geometry description of a line and a cylinder in 3d space.
After the swap, find the segments r and u (if they exist) that are immediately below and above t and s, respectively. Remove any crossing points rs (i.e. a crossing point between r and s) and tu (i.e. a crossing point between t and u) from the event queue, and, if r and t cross or s and u cross, add those crossing points to the event queue.
Some of these points of intersection are standard; for instance, these include the construction of the centroid of a triangle as the point where its three median lines meet, the construction of the orthocenter as the point where the three altitudes meet, and the construction of the circumcenter as the point where the three perpendicular ...
These three points are the intersection points of the "opposite" sides of the hexagon AbCaBc. According to Pappus' theorem, the resulting system of nine points and eight lines always has a ninth line containing the three intersection points X, Y, and Z, called the Pappus line. [2] The Pappus configuration from perspective triangles XcC and YbB