enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Best-first search - Wikipedia

    en.wikipedia.org/wiki/Best-first_search

    Best-first search is a class of search algorithms which explores a graph by expanding the most promising node chosen according to a specified rule.. Judea Pearl described best-first search as estimating the promise of node n by a "heuristic evaluation function () which, in general, may depend on the description of n, the description of the goal, the information gathered by the search up to ...

  3. A* search algorithm - Wikipedia

    en.wikipedia.org/wiki/A*_search_algorithm

    Dijkstra's algorithm, as another example of a uniform-cost search algorithm, can be viewed as a special case of A* where ⁠ = ⁠ for all x. [ 12 ] [ 13 ] General depth-first search can be implemented using A* by considering that there is a global counter C initialized with a very large value.

  4. Search algorithm - Wikipedia

    en.wikipedia.org/wiki/Search_algorithm

    Specific applications of search algorithms include: Problems in combinatorial optimization, such as: . The vehicle routing problem, a form of shortest path problem; The knapsack problem: Given a set of items, each with a weight and a value, determine the number of each item to include in a collection so that the total weight is less than or equal to a given limit and the total value is as ...

  5. Branch and bound - Wikipedia

    en.wikipedia.org/wiki/Branch_and_bound

    A stack (LIFO queue) will yield a depth-first algorithm. A best-first branch and bound algorithm can be obtained by using a priority queue that sorts nodes on their lower bound. [3] Examples of best-first search algorithms with this premise are Dijkstra's algorithm and its descendant A* search. The depth-first variant is recommended when no ...

  6. Admissible heuristic - Wikipedia

    en.wikipedia.org/wiki/Admissible_heuristic

    In computer science, specifically in algorithms related to pathfinding, a heuristic function is said to be admissible if it never overestimates the cost of reaching the goal, i.e. the cost it estimates to reach the goal is not higher than the lowest possible cost from the current point in the path. [1]

  7. Iterative deepening A* - Wikipedia

    en.wikipedia.org/wiki/Iterative_deepening_A*

    It is a variant of iterative deepening depth-first search that borrows the idea to use a heuristic function to conservatively estimate the remaining cost to get to the goal from the A* search algorithm. Since it is a depth-first search algorithm, its memory usage is lower than in A*, but unlike ordinary iterative deepening search, it ...

  8. Beam search - Wikipedia

    en.wikipedia.org/wiki/Beam_search

    Beam search with width 3 (animation) In computer science, beam search is a heuristic search algorithm that explores a graph by expanding the most promising node in a limited set. Beam search is a modification of best-first search that reduces its memory requirements. Best-first search is a graph search which orders all partial solutions (states ...

  9. MTD(f) - Wikipedia

    en.wikipedia.org/wiki/MTD(f)

    The better the quicker the algorithm converges. Could be 0 for first call. d Depth to loop for. An iterative deepening depth-first search could be done by calling MTDF() multiple times with incrementing d and providing the best previous result in f. [5] AlphaBetaWithMemory is a variation of Alpha Beta Search that caches previous results.