Search results
Results from the WOW.Com Content Network
In trigonometry, the law of tangents or tangent rule [1] is a statement about the relationship between the tangents of two angles of a triangle and the lengths of the opposing sides. In Figure 1, a, b, and c are the lengths of the three sides of the triangle, and α, β, and γ are the angles opposite those three respective sides.
The tangent is the x-axis, which cuts the graph at this point. An example of a non-stationary point of inflection is the point (0, 0) on the graph of y = x 3 + ax, for any nonzero a. The tangent at the origin is the line y = ax, which cuts the graph at this point.
In mathematics, a tangent vector is a vector that is tangent to a curve or surface at a given point. Tangent vectors are described in the differential geometry of curves in the context of curves in R n. More generally, tangent vectors are elements of a tangent space of a differentiable manifold. Tangent vectors can also be described in terms of ...
Mathematical tables are lists of numbers showing the results of a calculation with varying arguments.Trigonometric tables were used in ancient Greece and India for applications to astronomy and celestial navigation, and continued to be widely used until electronic calculators became cheap and plentiful in the 1970s, in order to simplify and drastically speed up computation.
In most cases, the tangent will intersect a second point R and we can take its opposite. If P and Q are opposites of each other, we define P + Q = O. Lastly, If P is an inflection point (a point where the concavity of the curve changes), we take R to be P itself and P + P is simply the point opposite itself, i.e. itself.
In mathematics, tables of trigonometric functions are useful in a number of areas. Before the existence of pocket calculators, trigonometric tables were essential for navigation, science and engineering. The calculation of mathematical tables was an important area of study, which led to the development of the first mechanical computing devices.
Trigonometric tables. Generating trigonometric tables; Āryabhaṭa's sine table; Bhaskara I's sine approximation formula; Madhava's sine table; Ptolemy's table of chords, written in the second century A.D. Rule of marteloio; Canon Sinuum, listing sines at increments of two arcseconds, published in the late 1500s
These identities are useful whenever expressions involving trigonometric functions need to be simplified. An important application is the integration of non-trigonometric functions: a common technique involves first using the substitution rule with a trigonometric function, and then simplifying the resulting integral with a trigonometric identity.