Search results
Results from the WOW.Com Content Network
Semantic data mining is a subset of data mining that specifically seeks to incorporate domain knowledge, such as formal semantics, into the data mining process.Domain knowledge is the knowledge of the environment the data was processed in. Domain knowledge can have a positive influence on many aspects of data mining, such as filtering out redundant or inconsistent data during the preprocessing ...
Given the variety of data sources (e.g. databases, business applications) that provide data and formats that data can arrive in, data preparation can be quite involved and complex. There are many tools and technologies [5] that are used for data preparation. The cost of cleaning the data should always be balanced against the value of the ...
The import and export of data is the automated or semi-automated input and output of data sets between different software applications.It involves "translating" from the format used in one application into that used by another, where such translation is accomplished automatically via machine processes, such as transcoding, data transformation, and others.
Data understanding; Data preparation; Modeling; Evaluation; Deployment; or a simplified process such as (1) Pre-processing, (2) Data Mining, and (3) Results Validation. Polls conducted in 2002, 2004, 2007 and 2014 show that the CRISP-DM methodology is the leading methodology used by data miners. [15] [16] [17] [18]
For some programming languages, the rules are written in the same language as the program (compile-time reflection). This is the case with Lisp and OCaml . Some other languages rely on a fully external language to define the transformations, such as the XSLT preprocessor for XML , or its statically typed counterpart CDuce.
Preprocessing can refer to the following topics in computer science: Preprocessor , a program that processes its input data to produce output that is used as input to another program like a compiler Data pre-processing , used in machine learning and data mining to make input data easier to work with
Data wrangling typically follows a set of general steps which begin with extracting the data in a raw form from the data source, "munging" the raw data (e.g. sorting) or parsing the data into predefined data structures, and finally depositing the resulting content into a data sink for storage and future use. [1]
Data cleansing may also involve harmonization (or normalization) of data, which is the process of bringing together data of "varying file formats, naming conventions, and columns", [2] and transforming it into one cohesive data set; a simple example is the expansion of abbreviations ("st, rd, etc." to "street, road, etcetera").