Search results
Results from the WOW.Com Content Network
In fluid mechanics, displacement occurs when an object is largely immersed in a fluid, pushing it out of the way and taking its place. The volume of the fluid displaced can then be measured, and from this, the volume of the immersed object can be deduced: the volume of the immersed object will be exactly equal to the volume of the displaced fluid.
Once it fully sinks to the floor of the fluid or rises to the surface and settles, Archimedes principle can be applied alone. For a floating object, only the submerged volume displaces water. For a sunken object, the entire volume displaces water, and there will be an additional force of reaction from the solid floor.
The displacement or displacement tonnage of a ship is its weight. As the term indicates, it is measured indirectly, using Archimedes' principle, by first calculating the volume of water displaced by the ship, then converting that value into weight.
Measurement of volume by displacement, (a) before and (b) after an object has been submerged; the amount by which the liquid rises in the cylinder (∆V) is equal to the volume of the object. The most widely known anecdote about Archimedes tells of how he invented a method for determining the volume of an object with an irregular shape.
Example 1: If a block of solid stone weighs 3 kilograms on dry land and 2 kilogram when immersed in a tub of water, then it has displaced 1 kilogram of water. Since 1 liter of water weighs 1 kilogram (at 4 °C), it follows that the volume of the block is 1 liter and the density (mass/volume) of the stone is 3 kilograms/liter.
On 7 April 1795, the metric system was formally defined in French law using six units. Three of these are related to volume: the stère (1 m 3) for volume of firewood; the litre (1 dm 3) for volumes of liquid; and the gramme, for mass—defined as the mass of one cubic centimetre of water at the temperature of melting ice. [10]
The gross tonnage calculation is defined in Regulation 3 of Annex 1 of The International Convention on Tonnage Measurement of Ships, 1969. [3] It is based on two variables, and is ultimately an increasing one-to-one function of ship volume: V, the ship's total volume in cubic metres (m 3), and; K, a multiplier based on the ship volume.
Simpson's rules are used to calculate the volume of lifeboats, [6] and by surveyors to calculate the volume of sludge in a ship's oil tanks. For instance, in the latter, Simpson's 3rd rule is used to find the volume between two co-ordinates. To calculate the entire area / volume, Simpson's first rule is used. [7]