Search results
Results from the WOW.Com Content Network
Solid-phase electrical conductivity: Variable, [6] depending on the nature of the bonding: network solids in which all electrons are used for sigma bonds (e.g. diamond, quartz) are poor conductors, as there are no delocalized electrons. However, network solids with delocalized pi bonds (e.g. graphite) or dopants can exhibit metal-like conductivity.
The covalent bonds in this material form extended structures, but do not form a continuous network. With cross-linking, however, polymer networks can become continuous, and a series of materials spans the range from Cross-linked polyethylene , to rigid thermosetting resins, to hydrogen-rich amorphous solids, to vitreous carbon, diamond-like ...
Indeed, many molecules behave as acids in non-aqueous solutions but not in aqueous solutions. An extreme case occurs with carbon acids, where a proton is extracted from a C−H bond. [12] Some non-aqueous solvents can behave as acids. An acidic solvent will make dissolved substances more basic.
Chemical reaction network theory is an area of applied mathematics that attempts to model the behaviour of real-world chemical systems. Since its foundation in the 1960s, it has attracted a growing research community, mainly due to its applications in biochemistry and theoretical chemistry .
In 2020, it was announced that Google's AlphaFold, a neural network based on DeepMind artificial intelligence, is capable of predicting a protein's final shape based solely on its amino-acid chain with an accuracy of around 90% on a test sample of proteins used by the team.
The search engine that helps you find exactly what you're looking for. Find the most relevant information, video, images, and answers from all across the Web.
The following outline acts as an overview of and topical guide to chemistry: . Chemistry is the science of atomic matter (matter that is composed of chemical elements), especially its chemical reactions, but also including its properties, structure, composition, behavior, and changes as they relate to the chemical reactions.
A concentrated hydrogen peroxide solution can be easily decomposed to water and oxygen. An example of a spontaneous (without addition of an external energy source) decomposition is that of hydrogen peroxide which slowly decomposes into water and oxygen (see video at right): 2 H 2 O 2 → 2 H 2 O + O 2