enow.com Web Search

  1. Ad

    related to: 3d shapes sphere faces edges

Search results

  1. Results from the WOW.Com Content Network
  2. List of uniform polyhedra - Wikipedia

    en.wikipedia.org/wiki/List_of_uniform_polyhedra

    one degenerate polyhedron, Skilling's figure with overlapping edges. It was proven in Sopov (1970) that there are only 75 uniform polyhedra other than the infinite families of prisms and antiprisms. John Skilling discovered an overlooked degenerate example, by relaxing the condition that only two faces may meet at an edge.

  3. Rhombicosidodecahedron - Wikipedia

    en.wikipedia.org/wiki/Rhombicosidodecahedron

    In geometry, the Rhombicosidodecahedron is an Archimedean solid, one of thirteen convex isogonal nonprismatic solids constructed of two or more types of regular polygon faces. It has 20 regular triangular faces, 30 square faces, 12 regular pentagonal faces, 60 vertices, and 120 edges.

  4. Polyhedron - Wikipedia

    en.wikipedia.org/wiki/Polyhedron

    This implies that all faces meet at right angles, but this condition is weaker: Jessen's icosahedron has faces meeting at right angles, but does not have axis-parallel edges. Aside from the rectangular cuboids, orthogonal polyhedra are nonconvex. They are the 3D analogs of 2D orthogonal polygons, also known as rectilinear polygons.

  5. Face (geometry) - Wikipedia

    en.wikipedia.org/wiki/Face_(geometry)

    where V is the number of vertices, E is the number of edges, and F is the number of faces. This equation is known as Euler's polyhedron formula. Thus the number of faces is 2 more than the excess of the number of edges over the number of vertices. For example, a cube has 12 edges and 8 vertices, and hence 6 faces.

  6. Regular icosahedron - Wikipedia

    en.wikipedia.org/wiki/Regular_icosahedron

    3D model of a regular icosahedron. The insphere of a convex polyhedron is a sphere inside the polyhedron, touching every face. The circumsphere of a convex polyhedron is a sphere that contains the polyhedron and touches every vertex. The midsphere of a convex polyhedron is a sphere tangent to every

  7. Truncated icosahedron - Wikipedia

    en.wikipedia.org/wiki/Truncated_icosahedron

    3D model of a truncated icosahedron In geometry , the truncated icosahedron is a polyhedron that can be constructed by truncating all of the regular icosahedron 's vertices. Intuitively, it may be regarded as footballs (or soccer balls) that are typically patterned with white hexagons and black pentagons.

  8. Geodesic polyhedron - Wikipedia

    en.wikipedia.org/wiki/Geodesic_polyhedron

    Geodesic polyhedra are constructed by subdividing faces of simpler polyhedra, and then projecting the new vertices onto the surface of a sphere. A geodesic polyhedron has straight edges and flat faces that approximate a sphere, but it can also be made as a spherical polyhedron (a tessellation on a sphere ) with true geodesic curved edges on the ...

  9. List of mathematical shapes - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_shapes

    Tessellations of euclidean and hyperbolic space may also be considered regular polytopes. Note that an 'n'-dimensional polytope actually tessellates a space of one dimension less. For example, the (three-dimensional) platonic solids tessellate the 'two'-dimensional 'surface' of the sphere.

  1. Ad

    related to: 3d shapes sphere faces edges