Ad
related to: how does a gaussmeter work
Search results
Results from the WOW.Com Content Network
The difference in the oscillations when the bar was magnetised and when it was demagnetised allowed Gauss to calculate an absolute value for the strength of the Earth's magnetic field. [8] The gauss, the CGS unit of magnetic flux density was named in his honour, defined as one maxwell per square centimeter; it equals 1×10 −4 tesla (the SI ...
An EMF meter is a scientific instrument for measuring electromagnetic fields (abbreviated as EMF). Most meters measure the electromagnetic radiation flux density (DC fields) or the change in an electromagnetic field over time (AC fields), essentially the same as a radio antenna, but with quite different detection characteristics.
The gauss is the unit of magnetic flux density B in the system of Gaussian units and is equal to Mx/cm 2 or g/Bi/s 2, while the oersted is the unit of H-field. One tesla (T) corresponds to 10 4 gauss, and one ampere (A) per metre corresponds to 4π × 10 −3 oersted.
Hall effect magnetometers (also called tesla meters or gauss meters) use a Hall probe [23] with a Hall element to measure magnetic fields or inspect materials (such as tubing or pipelines) using the principles of magnetic flux leakage. A Hall probe is a device that uses a calibrated Hall effect sensor to directly measure the strength of a ...
To demagnetize a part, the current or magnetic field needed has to be equal to or greater than the current or magnetic field used to magnetize the part. The current or magnetic field is then slowly reduced to zero, leaving the part demagnetized. A popular method to record residual magnetism is by using a Gauss meter. [2] AC demagnetizing
The two equations for the EMF are, firstly, the work per unit charge done against the Lorentz force in moving a test charge around the (possibly moving) surface boundary ∂Σ and, secondly, as the change of magnetic flux through the open surface Σ. This equation is the principle behind an electrical generator.
Gauss's law in its integral form is particularly useful when, by symmetry reasons, a closed surface (GS) can be found along which the electric field is uniform. The electric flux is then a simple product of the surface area and the strength of the electric field, and is proportional to the total charge enclosed by the surface.
While Gauss's law holds for all situations, it is most useful for "by hand" calculations when high degrees of symmetry exist in the electric field. Examples include spherical and cylindrical symmetry. The [SI] unit of electric flux is the volt-meter (V·m), or, equivalently, newton-meter squared per coulomb (N·m 2 ·C −1).
Ad
related to: how does a gaussmeter work