enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Peirce's criterion - Wikipedia

    en.wikipedia.org/wiki/Peirce's_criterion

    In data sets containing real-numbered measurements, the suspected outliers are the measured values that appear to lie outside the cluster of most of the other data values. . The outliers would greatly change the estimate of location if the arithmetic average were to be used as a summary statistic of locati

  3. Leverage (statistics) - Wikipedia

    en.wikipedia.org/wiki/Leverage_(statistics)

    The formula then divides by () to account for the fact that we remove the observation rather than adjusting its value, reflecting the fact that removal changes the distribution of covariates more when applied to high-leverage observations (i.e. with outlier covariate values). Similar formulas arise when applying general formulas for statistical ...

  4. Grubbs's test - Wikipedia

    en.wikipedia.org/wiki/Grubbs's_test

    However, multiple iterations change the probabilities of detection, and the test should not be used for sample sizes of six or fewer since it frequently tags most of the points as outliers. [3] Grubbs's test is defined for the following hypotheses: H 0: There are no outliers in the data set H a: There is exactly one outlier in the data set

  5. Dixon's Q test - Wikipedia

    en.wikipedia.org/wiki/Dixon's_Q_test

    To apply a Q test for bad data, arrange the data in order of increasing values and calculate Q as defined: Q = gap range {\displaystyle Q={\frac {\text{gap}}{\text{range}}}} Where gap is the absolute difference between the outlier in question and the closest number to it.

  6. DFFITS - Wikipedia

    en.wikipedia.org/wiki/DFFITS

    Previously when assessing a dataset before running a linear regression, the possibility of outliers would be assessed using histograms and scatterplots. Both methods of assessing data points were subjective and there was little way of knowing how much leverage each potential outlier had on the results data.

  7. Chauvenet's criterion - Wikipedia

    en.wikipedia.org/wiki/Chauvenet's_criterion

    The idea behind Chauvenet's criterion finds a probability band that reasonably contains all n samples of a data set, centred on the mean of a normal distribution.By doing this, any data point from the n samples that lies outside this probability band can be considered an outlier, removed from the data set, and a new mean and standard deviation based on the remaining values and new sample size ...

  8. Sample maximum and minimum - Wikipedia

    en.wikipedia.org/wiki/Sample_maximum_and_minimum

    The sample maximum and minimum are the least robust statistics: they are maximally sensitive to outliers.. This can either be an advantage or a drawback: if extreme values are real (not measurement errors), and of real consequence, as in applications of extreme value theory such as building dikes or financial loss, then outliers (as reflected in sample extrema) are important.

  9. Cook's distance - Wikipedia

    en.wikipedia.org/wiki/Cook's_distance

    In statistics, Cook's distance or Cook's D is a commonly used estimate of the influence of a data point when performing a least-squares regression analysis. [1] In a practical ordinary least squares analysis, Cook's distance can be used in several ways: to indicate influential data points that are particularly worth checking for validity; or to indicate regions of the design space where it ...