enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Convex function - Wikipedia

    en.wikipedia.org/wiki/Convex_function

    The term convex is often referred to as convex down or concave upward, and the term concave is often referred as concave down or convex upward. [ 3 ] [ 4 ] [ 5 ] If the term "convex" is used without an "up" or "down" keyword, then it refers strictly to a cup shaped graph ∪ {\displaystyle \cup } .

  3. Convex - Wikipedia

    en.wikipedia.org/wiki/Convex

    Convex polygon, a polygon which encloses a convex set of points; Convex polytope, a polytope with a convex set of points; Convex metric space, a generalization of the convexity notion in abstract metric spaces; Convex function, when the line segment between any two points on the graph of the function lies above or on the graph

  4. Convex space - Wikipedia

    en.wikipedia.org/wiki/Convex_space

    In mathematics, a convex space (or barycentric algebra) is a space in which it is possible to take convex combinations of any sets of points. [ 1 ] [ 2 ] Formal Definition

  5. Convexity (algebraic geometry) - Wikipedia

    en.wikipedia.org/wiki/Convexity_(algebraic_geometry)

    A variety is called convex if the pullback of the tangent bundle to a stable rational curve: has globally generated sections. [2] Geometrically this implies the curve is free to move around infinitesimally without any obstruction. Convexity is generally phrased as the technical condition

  6. Convex geometry - Wikipedia

    en.wikipedia.org/wiki/Convex_geometry

    Convex geometry is a relatively young mathematical discipline. Although the first known contributions to convex geometry date back to antiquity and can be traced in the works of Euclid and Archimedes, it became an independent branch of mathematics at the turn of the 20th century, mainly due to the works of Hermann Brunn and Hermann Minkowski in dimensions two and three.

  7. Polyhedral combinatorics - Wikipedia

    en.wikipedia.org/wiki/Polyhedral_combinatorics

    Polyhedral combinatorics is a branch of mathematics, within combinatorics and discrete geometry, that studies the problems of counting and describing the faces of convex polyhedra and higher-dimensional convex polytopes. Research in polyhedral combinatorics falls into two distinct areas.

  8. Convex set - Wikipedia

    en.wikipedia.org/wiki/Convex_set

    The convex-hull operation is needed for the set of convex sets to form a lattice, in which the "join" operation is the convex hull of the union of two convex sets ⁡ ⁡ = ⁡ = ⁡ (⁡ ⁡ ()). The intersection of any collection of convex sets is itself convex, so the convex subsets of a (real or complex) vector space form a complete lattice .

  9. Convex analysis - Wikipedia

    en.wikipedia.org/wiki/Convex_analysis

    Convex analysis includes not only the study of convex subsets of Euclidean spaces but also the study of convex functions on abstract spaces. Convex analysis is the branch of mathematics devoted to the study of properties of convex functions and convex sets, often with applications in convex minimization, a subdomain of optimization theory.