enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dielectric - Wikipedia

    en.wikipedia.org/wiki/Dielectric

    In electromagnetism, a dielectric (or dielectric medium) is an electrical insulator that can be polarised by an applied electric field.When a dielectric material is placed in an electric field, electric charges do not flow through the material as they do in an electrical conductor, because they have no loosely bound, or free, electrons that may drift through the material, but instead they ...

  3. Polarizability - Wikipedia

    en.wikipedia.org/wiki/Polarizability

    Polarizability is responsible for a material's dielectric constant and, at high (optical) frequencies, its refractive index. The polarizability of an atom or molecule is defined as the ratio of its induced dipole moment to the local electric field; in a crystalline solid, one considers the dipole moment per unit cell. [1]

  4. Relative permittivity - Wikipedia

    en.wikipedia.org/wiki/Relative_permittivity

    The relative permittivity (in older texts, dielectric constant) is the permittivity of a material expressed as a ratio with the electric permittivity of a vacuum. A dielectric is an insulating material, and the dielectric constant of an insulator measures the ability of the insulator to store electric energy in an electrical field.

  5. Electric susceptibility - Wikipedia

    en.wikipedia.org/wiki/Electric_susceptibility

    In many materials the polarizability starts to saturate at high values of electric field. This saturation can be modelled by a nonlinear susceptibility. These susceptibilities are important in nonlinear optics and lead to effects such as second-harmonic generation (such as used to convert infrared light into visible light, in green laser pointers).

  6. Dielectric spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Dielectric_spectroscopy

    A related effect is Maxwell-Wagner-Sillars polarization, where charge carriers blocked at inner dielectric boundary layers (on the mesoscopic scale) or external electrodes (on a macroscopic scale) lead to a separation of charges. The charges may be separated by a considerable distance and therefore make contributions to the dielectric loss that ...

  7. Vacuum polarization - Wikipedia

    en.wikipedia.org/wiki/Vacuum_polarization

    In the presence of an electric field, e.g., the electromagnetic field around an electron, these particle–antiparticle pairs reposition themselves, thus partially counteracting the field (a partial screening effect, a dielectric effect). The field therefore will be weaker than would be expected if the vacuum were completely empty.

  8. Dielectrophoresis - Wikipedia

    en.wikipedia.org/wiki/Dielectrophoresis

    By means of different factors, such as diffusion and steric, hydrodynamic, dielectric and other effects, or a combination thereof, particles (<1 μm in diameter) with different dielectric or diffusive properties attain different positions away from the chamber wall, which, in turn, exhibit different characteristic concentration profile.

  9. Surface plasmon - Wikipedia

    en.wikipedia.org/wiki/Surface_plasmon

    It can also lose energy due to scattering into free-space or into other directions. The electric field falls off evanescently perpendicular to the metal surface. At low frequencies, the SPP penetration depth into the metal is commonly approximated using the skin depth formula. In the dielectric, the field will fall off far more slowly.