enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. String metric - Wikipedia

    en.wikipedia.org/wiki/String_metric

    The most widely known string metric is a rudimentary one called the Levenshtein distance (also known as edit distance). [2] It operates between two input strings, returning a number equivalent to the number of substitutions and deletions needed in order to transform one input string into another.

  3. Jaro–Winkler distance - Wikipedia

    en.wikipedia.org/wiki/Jaro–Winkler_distance

    The higher the Jaro–Winkler distance for two strings is, the less similar the strings are. The score is normalized such that 0 means an exact match and 1 means there is no similarity. The original paper actually defined the metric in terms of similarity, so the distance is defined as the inversion of that value (distance = 1 − similarity).

  4. Levenshtein distance - Wikipedia

    en.wikipedia.org/wiki/Levenshtein_distance

    In information theory, linguistics, and computer science, the Levenshtein distance is a string metric for measuring the difference between two sequences. The Levenshtein distance between two words is the minimum number of single-character edits (insertions, deletions or substitutions) required to change one word into the other.

  5. Damerau–Levenshtein distance - Wikipedia

    en.wikipedia.org/wiki/Damerau–Levenshtein_distance

    The difference between the two algorithms consists in that the optimal string alignment algorithm computes the number of edit operations needed to make the strings equal under the condition that no substring is edited more than once, whereas the second one presents no such restriction. Take for example the edit distance between CA and ABC.

  6. Hamming distance - Wikipedia

    en.wikipedia.org/wiki/Hamming_distance

    In information theory, the Hamming distance between two strings or vectors of equal length is the number of positions at which the corresponding symbols are different. In other words, it measures the minimum number of substitutions required to change one string into the other, or equivalently, the minimum number of errors that could have transformed one string into the other.

  7. Edit distance - Wikipedia

    en.wikipedia.org/wiki/Edit_distance

    Various algorithms exist that solve problems beside the computation of distance between a pair of strings, to solve related types of problems. Hirschberg's algorithm computes the optimal alignment of two strings, where optimality is defined as minimizing edit distance. Approximate string matching can be formulated in terms of edit distance.

  8. Dice-Sørensen coefficient - Wikipedia

    en.wikipedia.org/wiki/Dice-Sørensen_coefficient

    When taken as a string similarity measure, the coefficient may be calculated for two strings, x and y using bigrams as follows: [11] = + where n t is the number of character bigrams found in both strings, n x is the number of bigrams in string x and n y is the number of bigrams in string y. For example, to calculate the similarity between:

  9. Similarity measure - Wikipedia

    en.wikipedia.org/wiki/Similarity_measure

    In statistics and related fields, a similarity measure or similarity function or similarity metric is a real-valued function that quantifies the similarity between two objects. Although no single definition of a similarity exists, usually such measures are in some sense the inverse of distance metrics : they take on large values for similar ...