Search results
Results from the WOW.Com Content Network
In mathematics, the Riemann hypothesis is the conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part 1 / 2 . Many consider it to be the most important unsolved problem in pure mathematics. [1]
Generally speaking, Riemann solvers are specific methods for computing the numerical flux across a discontinuity in the Riemann problem. [1] They form an important part of high-resolution schemes; typically the right and left states for the Riemann problem are calculated using some form of nonlinear reconstruction, such as a flux limiter or a WENO method, and then used as the input for the ...
A Riemann problem, named after Bernhard Riemann, is a specific initial value problem composed of a conservation equation together with piecewise constant initial data which has a single discontinuity in the domain of interest.
The Riemann Hypothesis. Today’s mathematicians would probably agree that the Riemann Hypothesis is the most significant open problem in all of math. It’s one of the seven Millennium Prize ...
The Clay Mathematics Institute officially designated the title Millennium Problem for the seven unsolved mathematical problems, the Birch and Swinnerton-Dyer conjecture, Hodge conjecture, Navier–Stokes existence and smoothness, P versus NP problem, Riemann hypothesis, Yang–Mills existence and mass gap, and the Poincaré conjecture at the ...
The extended Riemann hypothesis asserts that for every number field K and every complex number s with ζ K (s) = 0: if the real part of s is between 0 and 1, then it is in fact 1/2. The ordinary Riemann hypothesis follows from the extended one if one takes the number field to be Q , with ring of integers Z .
In mathematics, the grand Riemann hypothesis is a generalisation of the Riemann hypothesis and generalized Riemann hypothesis. It states that the nontrivial zeros of all automorphic L -functions lie on the critical line 1 2 + i t {\displaystyle {\frac {1}{2}}+it} with t {\displaystyle t} a real number variable and i {\displaystyle i} the ...
It asks for more work on the distribution of primes and generalizations of Riemann hypothesis to other rings where prime ideals take the place of primes. Absolute value of the ζ-function. Hilbert's eighth problem includes the Riemann hypothesis, which states that this function can only have non-trivial zeroes along the line x = 1/2 [2].